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Completing the Square 

The last thing we need to discuss on the topic of trig substitution is completing 
the square. This is necessary when we want to integrate the square root of a 
quadratic whose form is not as simple as ax2 + c. 

dx 
Example: √

x2 + 4x 
The integrand contains the square root of a quadratic, but it doesn’t match 

any of the forms in our table of trig substitutions. What we need to do is use 
substitution to rewrite it in a form that is in our table. 

We’ll start by trying to write the quadratic in the form: 

(x + a)2 + c. 

x 2 + 4x = (x + a)2 + c 

= x 2 + 2xa + a 2 + c 

Since the coefficient on x on the left must equal that on the right, it must 
be true that 2xa = 4x; i.e. a = 2. Similarly, we get a2 + c = 0 or c = −4. So: 

x 2 + 4 = (x + 2)2 − 4. 

This process of eliminating the “middle term” using the square of a linear 
function is called completing the square. When we plug this into our integral, it 
becomes: � � 

dx dx √
x2 + 4x 

= � 
(x + 2)2 − 4 

This is closer to the forms listed in our trig substitution table, but a direct 
substitution of u = x + 2 brings us even closer: 

dx du 
=√

x2 + 4x 
√
u2 − 4 

We now consult our table and perform the trig substitution u = 2 sec θ, 
du = 2 sec θ tan θ dθ. 

dx 2 sec θ tan θ dθ 
=√

x2 + 4x 
√
4 sec2 θ − 4 

2 sec θ tan θ dθ 
= 

2
√
tan2 θ 

sec θ tan θ dθ 
= 

tan θ 

= sec θ dθ 

= ln(sec θ + tan θ) + c 
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We’ve completed the integration, but we still need to reverse our two sub
stitutions. We readily see that sec θ = u 

2 , and in the process of computing the 

integral we calculated that 
√
u2 − 4 = 2 tan θ, so tan θ = 

√
u2 

2 
− 4

. Hence we 

can avoid drawing a triangle and say: 

dx u 
√
u2 − 4 √

x2 + 4x 
= ln 

2
+ 

2 
+ c 

Finally, we replace u by x + 2 to reverse the first substitution: 

dx x + 2 (x + 2)2 
√
x2 + 4x 

= ln
2

+ 
2 

− 4
+ c 

x + 2 
√
x2 + 4x 

= ln + + c 
2 2 
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