Summary of Trig Substitution

Here is a table of different trig substitutions and how they can be useful.

If your integrand contains	Make substitution	To get
$\sqrt{a^{2}-x^{2}}$	$x=a \cos \theta$ or $x=a \sin \theta$	$a \sin \theta$ or $a \cos \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$a \sec \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$a \tan \theta$

These are the three basic forms which are integrated using trig substitution. In general, you use trig substitution to replace the square root of a quadratic function by a trigonometric function. Once you've done this, integrate, then use what we've learned about right triangles and undoing trig substitution to get a final answer.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

