Example of Trig Substitution: $\int \frac{d x}{x^{2} \sqrt{1+x^{2}}}$

$$
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}}=?
$$

This is an ugly integral. The square root is the ugliest part, so we'll try to rewrite it in such a way that we can get rid of the square. If we let $x=\tan \theta$ then the identity $\sec ^{2} \theta=1+\tan ^{2} \theta$ will allow this. We'll then have $d x=\sec ^{2} \theta d \theta$:

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}} & =\int \frac{\sec ^{2} \theta d \theta}{\tan ^{2} \theta \sqrt{1+\tan ^{2} \theta}} \\
& =\int \frac{\sec ^{2} \theta d \theta}{\tan ^{2} \theta \sqrt{\sec ^{2} \theta}} \\
& =\int \frac{\sec ^{2} \theta d \theta}{\tan ^{2} \theta \sec \theta} \\
& =\int \frac{\sec \theta d \theta}{\tan ^{2} \theta}
\end{aligned}
$$

When faced with an assortment of different trig functions like this one, it's a good idea to rewrite everything in terms of $\sin \theta$ and $\cos \theta$:

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}} & =\int \frac{\frac{1}{\cos \theta} d \theta}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\int \frac{\cos ^{2} \theta d \theta}{\cos \theta \sin ^{2} \theta} \\
& =\int \frac{\cos \theta d \theta}{\sin ^{2} \theta}
\end{aligned}
$$

The ugliest part of this integral is the $\sin ^{2} \theta$ in the denominator. Since $\cos \theta d \theta$ is the derivative of $\sin \theta$, we make the substitution $u=\sin \theta, d u=$ $\cos \theta d \theta$:

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}} & =\int \frac{\cos \theta d \theta}{\sin ^{2} \theta} \\
& =\int \frac{d u}{u^{2}} \\
& =-\frac{1}{u}+c
\end{aligned}
$$

Now we have to reverse our substitutions:

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}} & =-\frac{1}{\sin \theta}+c \\
& =-\csc \theta+c
\end{aligned}
$$

It's not clear how to undo the substitution $x=\tan \theta$. Luckily there is a general method for undoing substitutions like this, which is to go back to thinking of trig functions as ratios of side lengths of a right triangle.

Figure 1: Undoing trig substitution.

We know $x=\tan \theta$ and we know that $\tan \theta$ equals the length of the leg opposite θ divided by the length of the leg adjacent to θ. Figure 1 shows a right triangle with an angle θ, an opposite leg of length x, and an adjacent leg of length 1.

The Pythagorean theorem tells us that the hypotenuse must have length $\sqrt{1+x^{2}}$. Now we can deduce that:

$$
\csc \theta=\frac{\text { hyp }}{\mathrm{opp}}=\frac{\sqrt{1+x^{2}}}{x}
$$

Hence,

$$
\int \frac{d x}{x^{2} \sqrt{1+x^{2}}}=-\frac{\sqrt{1+x^{2}}}{x}+c
$$

In the process of computing this integral we saw the following: trig substitution, rewriting trig functions in terms of sine and cosine, direct substitution, and undoing trig substitution.

What actually happened when we undid that trig substitution was that we computed $\csc (\arctan (x))$. In other words, we composed a trig function with the inverse of another trig function.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

