Example of Trig Substitution:
$$\int \frac{dx}{x^2\sqrt{1+x^2}}$$

 $\int \frac{dx}{x^2\sqrt{1+x^2}} = ?$

This is an ugly integral. The square root is the ugliest part, so we'll try to rewrite it in such a way that we can get rid of the square. If we let $x = \tan \theta$ then the identity $\sec^2 \theta = 1 + \tan^2 \theta$ will allow this. We'll then have $dx = \sec^2 \theta \, d\theta$:

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta \sqrt{1+\tan^2 \theta}}$$
$$= \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta \sqrt{\sec^2 \theta}}$$
$$= \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta \sec \theta}$$
$$= \int \frac{\sec \theta \, d\theta}{\tan^2 \theta}$$

When faced with an assortment of different trig functions like this one, it's a good idea to rewrite everything in terms of $\sin \theta$ and $\cos \theta$:

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = \int \frac{\frac{1}{\cos \theta} d\theta}{\frac{\sin^2 \theta}{\cos^2 \theta}}$$
$$= \int \frac{\cos^2 \theta d\theta}{\cos \theta \sin^2 \theta}$$
$$= \int \frac{\cos \theta d\theta}{\sin^2 \theta}$$

The ugliest part of this integral is the $\sin^2 \theta$ in the denominator. Since $\cos \theta \, d\theta$ is the derivative of $\sin \theta$, we make the substitution $u = \sin \theta$, $du = \cos \theta \, d\theta$:

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = \int \frac{\cos \theta \, d\theta}{\sin^2 \theta}$$
$$= \int \frac{du}{u^2}$$
$$= -\frac{1}{u} + c$$

Now we have to reverse our substitutions:

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = -\frac{1}{\sin \theta} + c$$
$$= -\csc \theta + c$$

It's not clear how to undo the substitution $x = \tan \theta$. Luckily there is a general method for undoing substitutions like this, which is to go back to thinking of trig functions as ratios of side lengths of a right triangle.

Figure 1: Undoing trig substitution.

We know $x = \tan \theta$ and we know that $\tan \theta$ equals the length of the leg opposite θ divided by the length of the leg adjacent to θ . Figure 1 shows a right triangle with an angle θ , an opposite leg of length x, and an adjacent leg of length 1.

The Pythagorean theorem tells us that the hypotenuse must have length $\sqrt{1+x^2}$. Now we can deduce that:

$$\csc \theta = \frac{\mathrm{hyp}}{\mathrm{opp}} = \frac{\sqrt{1+x^2}}{x}.$$

Hence,

$$\int \frac{dx}{x^2 \sqrt{1+x^2}} = -\frac{\sqrt{1+x^2}}{x} + c.$$

In the process of computing this integral we saw the following: trig substitution, rewriting trig functions in terms of sine and cosine, direct substitution, and undoing trig substitution.

What actually happened when we undid that trig substitution was that we computed $\csc(\arctan(x))$. In other words, we composed a trig function with the inverse of another trig function.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.