Summary of Trig Integration

We now know the following facts about trig functions and calculus:

$$
\begin{array}{ccc}
\sec x=\frac{1}{\cos x} & \tan x=\frac{\sin x}{\cos x} & \sin ^{2} x+\cos ^{2} x=1 \\
\csc x=\frac{1}{\sin x} & \cot x=\frac{\cos x}{\sin x} & \sec ^{2} x=1+\tan ^{2} x \\
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \sec x=\sec x \tan x & \int \tan x d x=-\ln |\cos (x)|+c \\
\frac{d}{d x} \sin x=\cos x & \frac{d}{d x} \cos x=-\sin x & \int \sec x d x=\ln (\sec x+\tan x)+c
\end{array}
$$

We've also seen several useful integration techniques, including methods for integrating any function of the form $\sin ^{n} x \cos ^{m} x$. At this point we have the tools needed to integrate most trigonometric polynomials.

Example: $\int \sec ^{4} x d x$
We can get rid of some factors of $\sec x$ using the identity $\sec ^{2} x=1+\tan ^{2} x$. This is a particularly good idea because $\sec ^{2} x$ is the derivative of $\tan x$.

$$
\begin{aligned}
\int \sec ^{4} x d x & =\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x \\
& =\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x
\end{aligned}
$$

Using the substitution $u=\tan x, d u=\sec ^{2} x d x$, we get:

$$
\begin{aligned}
\int \sec ^{4} x d x & =\int\left(1+u^{2}\right) d u \\
& =u+\frac{u^{3}}{3}+c \\
\int \sec ^{4} x d x & =\tan x+\frac{\tan ^{3} x}{3}+c
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

