Integral of Tangent

How do we integrate one of these trig functions if we can't work backward from a derivative we already know?

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

If you're working an integral like this and you see a trig function, it's good to look around and see if you can also find the derivative of that trig function. We make the substitution:

$$
u=\cos x, \quad d u=-\sin x d x
$$

and rewrite our integral as:

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x d x}{\cos x} \\
& =\int \frac{-d u}{u} \\
& =-\ln |u|+c \\
\int \tan x d x & =-\ln |\cos (x)|+c
\end{aligned}
$$

You'll find tables of formulas like this in the back of most textbooks. In addition, there is a certain amount of memorization that goes on in calculus; this is the kind of thing that you probably want to memorize.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

