Review of Trigonometric Identities

We've talked about trig integrals involving the sine and cosine functions. Now we'll look at trig functions like secant and tangent. Here's a quick review of their definitions:

$$
\begin{array}{ll}
\sec x=\frac{1}{\cos x} & \tan x=\frac{\sin x}{\cos x} \\
\csc x=\frac{1}{\sin x} & \cot x=\frac{\cos x}{\sin x} \tag{2}
\end{array}
$$

When you put a "co" in front of the name of the function, that exchanges the roles of sine and cosine in that function.

We have the following identities:

$$
\begin{aligned}
\sec ^{2} x & =1+\tan ^{2} x \\
\frac{d}{d x} \tan x & =\sec ^{2} x \\
\frac{d}{d x} \sec x & =\sec x \tan x
\end{aligned}
$$

We can verify these using familiar trig identities involving $\sin x$ and $\cos x$.

$$
\begin{aligned}
\sec ^{2} x & =\frac{1}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
\sec ^{2} x & =1+\tan ^{2} x
\end{aligned}
$$

This is the main trig identity behind what we'll do today.

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x} \quad \text { (chain rule) } \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
\frac{d}{d x} \tan x & =\sec ^{2} x
\end{aligned}
$$

From this we get our first integral of the day:

$$
\int \sec ^{2} x d x=\tan x+c
$$

$$
\begin{aligned}
\frac{d}{d x} \sec x & =\frac{d}{d x} \frac{1}{\cos x} \\
& =\frac{0-(-\sin x)}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x} \\
\frac{d}{d x} \sec x & =\tan x \sec x
\end{aligned}
$$

Should we ever need an antiderivative of $\tan x \sec x$ we now have one.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

