An Alternate Solution

Figure 1: The area of the shaded region is $\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x$.

As Professor Miller explained in lecture, the area of the region shown in Figure 1 is $\int_{0}^{b} \sqrt{a^{2}-x^{2}} d x$. Use the substitution $x=a \cos \theta$ to solve this integral. Hint: pay particular attention to your limits of integration.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

