Example: $\int \cos ^{2} x d x$
What if we have to integrate $\int \sin ^{n} x \cos ^{m} x d x$ when both exponents are even? This is a harder case; we'll use the half angle formulas to solve it.

$$
\begin{aligned}
& \cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2} \\
& \sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}
\end{aligned}
$$

These formulas help us by turning even powers of $\sin x$ and $\cos x$ into odd powers of $\cos (2 x)$.

If we wanted to integrate:

$$
\int \cos ^{2} x d x
$$

we could rewrite it as $\int\left(1-\sin ^{2} x\right) d x$, but the new integral is at least as hard as the one we started with. Instead we use a half angle formula:

$$
\begin{aligned}
\int \cos ^{2} x d x & =\int \frac{1+\cos (2 x)}{2} d x \\
& =\frac{x}{2}+\frac{\sin 2 x}{4}+c
\end{aligned}
$$

Notice that $\frac{x}{2}$ appears in the solution and is not a trigonometric function!

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

