Review of Trigonometric Identities

The topic of this segment is the use of trigonometric substitutions in integration. We start by reviewing some basic facts about trigonometry.

Figure 1: The unit circle.
Trigonometry is based on the circle of radius 1 centered at $(0,0)$. A point on that circle at angle θ (see Figure ??fig: 127 g 1) has coordinates $(\cos \theta, \sin \theta)$. Because the radius of the circle is 1 , the Pythagorean theorem tells us right away that $\sin ^{2} \theta+\cos ^{2} \theta=1$. (Remember that $\sin ^{2} \theta$ means $(\sin \theta)^{2}$.) You may also remember some double angle formulas.

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin (2 \theta) & =2 \sin \theta \cos \theta
\end{aligned}
$$

From the double angle formula for $\cos (2 \theta)$ we can derive the half angle formula:

$$
\begin{aligned}
\cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right) \\
\cos (2 \theta) & =2 \cos ^{2} \theta-1 \\
\Rightarrow \cos ^{2} \theta & =\frac{1+\cos (2 \theta)}{2}
\end{aligned}
$$

This formula will allow us to rewrite powers like $\cos ^{2} \theta$ in lower degree terms. A similar calculation shows that:

$$
\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

