Example: $\int x \tan ^{-1}(x) d x$
This is a slightly harder problem than any on the test, but something like this might appear on the final. How should we approach this?

Student: Integration by parts.
Great! Because $\tan ^{-1}(x)$ is begging to be differentiated to be made simpler. So we choose:

$$
\begin{array}{cl}
u=\tan -1(x), & v^{\prime}=x \\
u^{\prime}=\frac{1}{1+x^{2}}, & v=\frac{x^{2}}{2}
\end{array}
$$

Integration by parts then gives us:

$$
\int x \tan ^{-1}(x) d x=\frac{x^{2}}{2} \tan ^{-1}(x)-\int \frac{x^{2}}{2} \cdot \frac{1}{1+x^{2}} d x
$$

We're not done yet! We still have to integrate:

$$
-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x
$$

What do we do know?
Student: Trig substitution.
Trig substitution will work, but that's not what I had in mind.
Student: Add and subtract one in the numerator.
That's a good idea. This is an example of a rational expression in which the numerator and denominator have the same degree, so you could use long division to simplify the "improper fraction". An equivalent shortcut is:

$$
\begin{aligned}
\frac{x^{2}}{1+x^{2}} & =\frac{x^{2}+1-1}{1+x^{2}} \\
& =\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}} \\
& =1-\frac{1}{1+x^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x & =-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

The answer to the original question is then:

$$
\begin{aligned}
\int x \tan ^{-1}(x) d x & =\frac{x^{2}}{2} \tan ^{-1}(x)-\int \frac{x^{2}}{2} \frac{1}{1+x^{2}} d x \\
& =\frac{x^{2}}{2} \tan ^{-1}(x)+\frac{1}{2} x-\frac{1}{2} \tan ^{-1} x+c
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

