Antiderivatives are Unique up to a Constant

Theorem: If $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=f(x)$, then $F(x)=G(x)+c$.
In other words, once we've found one antiderivative of a function we know that any other antidervative we might find will only differ from it by some added constant.

Proof: If $F^{\prime}=G^{\prime}$ then $(F-G)^{\prime}=F^{\prime}-G^{\prime}=f-f=0$.
Recall that we proved as a corollary of the Mean Value Theorem that if a function's derivative is zero then it is constant. Hence $G(x)-F(x)=c$ (for some constant c). That is, $G(x)=F(x)+c$.

This is a very important fact. It's the basis for calculus; the reason why it makes sense to do calculus at all. This theorem tells us that if we know the rate of change of a function we can find out everything else about the function except this starting value c.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

