Antiderivative of x^a

What function has the derivative x^a ? We know that the exponent decreases by one when we differentiate, so we guess x^{1+1} . This doesn't quite work:

$$d(x^{a+1}) = (a+1)x^a dx.$$

We have to divide both sides by the constant (a + 1) to get the correct answer.

$$d(\frac{x^{a+1}}{a+1}) = x^a dx$$
$$\frac{x^{a+1}}{a+1} + c = \int x^a dx$$

But wait! Although it's true that $d(x^{a+1}) = (a+1)x^a dx$, it is not always true that $\int x^a dx = \frac{x^{a+1}}{a+1} + c$. When a = -1 the denominator is zero. However, we can still say that $\int x^a dx = \frac{x^{a+1}}{a+1} + c$ for $a \neq -1$.

What happens when a = -1? What is $\int \frac{1}{x} dx$?

So far we've used the formulas $\frac{d}{dx}\cos x = -\sin x$ and $\frac{d}{dx}x^{n+1} = (n+1)x^n$. An important part of integration is remembering formulas for derivatives and "reading them backward". In this case, the formula we need is $\frac{d}{dx}\ln x = \frac{1}{x}$. Using this, we get $\int \frac{1}{x}dx = \ln x + c$.

This formula is fine when x > 0, but $\ln x$ is not defined when x is negative. The more standard form of this equation is:

$$\int \frac{1}{x} dx = \ln|x| + c.$$

The absolute value doesn't change anything when $x \ge 0$, so we only need to check this formula when x is negative. In order to do so, we have to differentiate $\ln |x|$.

$$\frac{d}{dx}\ln|x| = \frac{d}{dx}\ln(-x) \quad (|x| = -x \text{ when } x < 0)$$
$$= \frac{1}{-x}\frac{d}{dx}(-x) \quad (\text{by the chain rule})$$
$$= -\frac{1}{-x}$$
$$= \frac{1}{x}$$

If we graph $\ln |x|$ we can see that this function does have slope $\frac{1}{x}$.

Figure 1: Graphs of y = ln(-x) (above) and $y' = \frac{1}{x}$ (below).

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.