Antiderivative of x^{a}

What function has the derivative x^{a} ? We know that the exponent decreases by one when we differentiate, so we guess x^{1+1}. This doesn't quite work:

$$
d\left(x^{a+1}\right)=(a+1) x^{a} d x
$$

We have to divide both sides by the constant $(a+1)$ to get the correct answer.

$$
\begin{aligned}
d\left(\frac{x^{a+1}}{a+1}\right) & =x^{a} d x \\
\frac{x^{a+1}}{a+1}+c & =\int x^{a} d x
\end{aligned}
$$

But wait! Although it's true that $d\left(x^{a+1}\right)=(a+1) x^{a} d x$, it is not always true that $\int x^{a} d x=\frac{x^{a+1}}{a+1}+c$. When $a=-1$ the denominator is zero. However, we can still say that $\int x^{a} d x=\frac{x^{a+1}}{a+1}+c$ for $a \neq-1$.

What happens when $a=-1$? What is $\int \frac{1}{x} d x$?
So far we've used the formulas $\frac{d}{d x} \cos x=-\sin x$ and $\frac{d}{d x} x^{n+1}=(n+1) x^{n}$. An important part of integration is remembering formulas for derivatives and "reading them backward". In this case, the formula we need is $\frac{d}{d x} \ln x=\frac{1}{x}$. Using this, we get $\int \frac{1}{x} d x=\ln x+c$.

This formula is fine when $x>0$, but $\ln x$ is not defined when x is negative. The more standard form of this equation is:

$$
\int \frac{1}{x} d x=\ln |x|+c
$$

The absolute value doesn't change anything when $x \geq 0$, so we only need to check this formula when x is negative. In order to do so, we have to differentiate $\ln |x|$.

$$
\begin{aligned}
\frac{d}{d x} \ln |x| & =\frac{d}{d x} \ln (-x) \quad(|x|=-x \text { when } x<0) \\
& =\frac{1}{-x} \frac{d}{d x}(-x) \quad(\text { by the chain rule }) \\
& =-\frac{1}{-x} \\
& =\frac{1}{x}
\end{aligned}
$$

If we graph $\ln |x|$ we can see that this function does have slope $\frac{1}{x}$.

Figure 1: Graphs of $y=\ln (-x)$ (above) and $y^{\prime}=\frac{1}{x}$ (below).

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

