SOLUTIONS TO 18.01 EXERCISES

Unit 3. Integration

3A. Differentials, indefinite integration

3A-1 a) $7 x^{6} d x .(d(\sin 1)=0$ because $\sin 1$ is a constant. $)$
b) $(1 / 2) x^{-1 / 2} d x$
c) $\left(10 x^{9}-8\right) d x$
d) $\left(3 e^{3 x} \sin x+e^{3 x} \cos x\right) d x$
e) $(1 / 2 \sqrt{x}) d x+(1 / 2 \sqrt{y}) d y=0$ implies

$$
d y=-\frac{1 / 2 \sqrt{x} d x}{1 / 2 \sqrt{y}}=-\frac{\sqrt{y}}{\sqrt{x}} d x=-\frac{1-\sqrt{x}}{\sqrt{x}} d x=\left(1-\frac{1}{\sqrt{x}}\right) d x
$$

3A-2 a) $(2 / 5) x^{5}+x^{3}+x^{2} / 2+8 x+c$
b) $(2 / 3) x^{3 / 2}+2 x^{1 / 2}+c$
c) Method 1 (slow way) Substitute: $u=8+9 x, d u=9 d x$. Therefore

$$
\int \sqrt{8+9 x} d x=\int u^{1 / 2}(1 / 9) d u=(1 / 9)(2 / 3) u^{3 / 2}+c=(2 / 27)(8+9 x)^{3 / 2}+c
$$

Method 2 (guess and check): It's often faster to guess the form of the antiderivative and work out the constant factor afterwards:

$$
\text { Guess }(8+9 x)^{3 / 2} ; \quad \frac{d}{d x}(8+9 x)^{3 / 2}=(3 / 2)(9)(8+9 x)^{1 / 2}=\frac{27}{2}(8+9 x)^{1 / 2}
$$

So multiply the guess by $\frac{2}{27}$ to make the derivative come out right; the answer is then

$$
\frac{2}{27}(8+9 x)^{3 / 2}+c
$$

d) Method 1 (slow way) Use the substitution: $u=1-12 x^{4}, d u=-48 x^{3} d x$. $\int x^{3}\left(1-12 x^{4}\right)^{1 / 8} d x=\int u^{1 / 8}(-1 / 48) d u=-\frac{1}{48}(8 / 9) u^{9 / 8}+c=-\frac{1}{54}\left(1-12 x^{4}\right)^{9 / 8}+c$

Method 2 (guess and check): guess $\left(1-12 x^{4}\right)^{9 / 8}$;

$$
\frac{d}{d x}\left(1-12 x^{4}\right)^{9 / 8}=\frac{9}{8}\left(-48 x^{3}\right)\left(1-12 x^{4}\right)^{1 / 8}=-54\left(1-12 x^{4}\right)^{1 / 8}
$$

So multiply the guess by $-\frac{1}{54}$ to make the derivative come out right, getting the previous answer.
e)

$$
\begin{aligned}
& \int \frac{x}{\sqrt{8-2 x^{2}}} d x \\
& =-\frac{\sqrt{8-2 x^{2}}}{2}+c
\end{aligned}
$$

The next four questions you should try to do (by Method 2) in your head. Write down the correct form of the solution and correct the factor in front.
f) $(1 / 7) e^{7 x}+c$
g) $(7 / 5) e^{x^{5}}+c$
h) $2 e^{\sqrt{x}}+c$
i) $(1 / 3) \ln (3 x+2)+c$. For comparison, let's see how much slower substitution is:

$$
\begin{gathered}
u=3 x+2, \quad d u=3 d x, \quad \text { so } \\
\int \frac{d x}{3 x+2}=\int \frac{(1 / 3) d u}{u}=(1 / 3) \ln u+c=(1 / 3) \ln (3 x+2)+c
\end{gathered}
$$

j)

$$
\int \frac{x+5}{x} d x=\int\left(1+\frac{5}{x}\right) d x=x+5 \ln x+c
$$

k)

$$
\int \frac{x}{x+5} d x=\int\left(1-\frac{5}{x+5}\right) d x=x-5 \ln (x+5)+c
$$

In Unit 5 this sort of algebraic trick will be explained in detail as part of a general method. What underlies the algebra in both (j) and (k) is the algorithm of long division for polynomials.
l) $u=\ln x, d u=d x / x$, so

$$
\int \frac{\ln x}{x} d x=\int u d u=(1 / 2) u^{2}+c=(1 / 2)(\ln x)^{2}+c
$$

m) $u=\ln x, d u=d x / x$.

$$
\int \frac{d x}{x \ln x}=\int \frac{d u}{u}=\ln u+c=\ln (\ln x)+c
$$

$\mathbf{3 A - 3}$ a) $-(1 / 5) \cos (5 x)+c$
b) $(1 / 2) \sin ^{2} x+c$, coming from the substitution $u=\sin x$ or $-(1 / 2) \cos ^{2} x+$ c, coming from the substitution $u=\cos x$. The two functions $(1 / 2) \sin ^{2} x$ and $-(1 / 2) \cos ^{2} x$ are not the same. Nevertheless the two answers given are the same. Why? (See 1J-1(m).)
c) $-(1 / 3) \cos ^{3} x+c$
d) $-(1 / 2)(\sin x)^{-2}+c=-(1 / 2) \csc ^{2} x+c$
e) $5 \tan (x / 5)+c$
f) $(1 / 7) \tan ^{7} x+c$.
g) $u=\sec x, d u=\sec x \tan x d x$,

$$
\int \sec ^{9} x \tan x d x \int(\sec x)^{8} \sec x \tan x d x=(1 / 9) \sec ^{9} x+c
$$

3B. Definite Integrals

$\mathbf{3 B} \mathbf{- 1}$ a) $1+4+9+16=30$
b) $2+4+8+16+32+64=126$
c) $-1+4-9+16-25=-15$
d) $1+1 / 2+1 / 3+1 / 4=25 / 12$
$\mathbf{3 B - 2}$ a) $\sum_{n=1}^{6}(-1)^{n+1}(2 n+1)$
b) $\sum_{k=1}^{n} 1 / k^{2}$
c) $\sum_{k=1}^{n} \sin (k x / n)$
$\mathbf{3 B} \mathbf{- 3}$ a) upper sum $=$ right sum $=(1 / 4)\left[(1 / 4)^{3}+(2 / 4)^{3}+(3 / 4)^{3}+(4 / 4)^{3}\right]=15 / 128$

$$
\text { lower sum }=\text { left sum }=(1 / 4)\left[0^{3}+(1 / 4)^{3}+(2 / 4)^{3}+(3 / 4)^{3}\right]=7 / 128
$$

b) left sum $=(-1)^{2}+0^{2}+1^{2}+2^{2}=6 ; \quad$ right sum $=0^{2}+1^{2}+2^{2}+3^{2}=14 ;$ upper sum $=(-1)^{2}+1^{2}+2^{2}+3^{2}=15 ; \quad$ lower sum $=0^{2}+0^{2}+1^{2}+2^{2}=5$.
c) left sum $=(\pi / 2)[\sin 0+\sin (\pi / 2)+\sin (\pi)+\sin (3 \pi / 2)]=(\pi / 2)[0+1+0-1]=$ 0;

$$
\begin{aligned}
& \text { right sum }=(\pi / 2)[\sin (\pi / 2)+\sin (\pi)+\sin (3 \pi / 2)+\sin (2 \pi)]=(\pi / 2)[1+0-1+0]=0 \\
& \quad \text { upper sum }=(\pi / 2)[\sin (\pi / 2)+\sin (\pi / 2)+\sin (\pi)+\sin (2 \pi)]=(\pi / 2)[1+1+0+0]=\pi \\
& \quad \text { lower sum }=(\pi / 2)[\sin (0)+\sin (\pi)+\sin (3 \pi / 2)+\sin (3 \pi / 2)]=(\pi / 2)[0+0-1-1]= \\
& -\pi
\end{aligned}
$$

3B-4 Both x^{2} and x^{3} are increasing functions on $0 \leq x \leq b$, so the upper sum is the right sum and the lower sum is the left sum. The difference between the right and left Riemann sums is

$$
(b / n)\left[f\left(x_{1}+\cdots+f\left(x_{n}\right)\right]-(b / n)\left[f\left(x_{0}+\cdots+f\left(x_{n-1}\right)\right]=(b / n)\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right]\right.\right.
$$

In both cases $x_{n}=b$ and $x_{0}=0$, so the formula is

$$
(b / n)(f(b)-f(0))
$$

a) $(b / n)\left(b^{2}-0\right)=b^{3} / n$. Yes, this tends to zero as $n \rightarrow \infty$.
b) $(b / n)\left(b^{3}-0\right)=b^{4} / n$. Yes, this tends to zero as $n \rightarrow \infty$.

3B-5 The expression is the right Riemann sum for the integral

$$
\int_{0}^{1} \sin (b x) d x=-\left.(1 / b) \cos (b x)\right|_{0} ^{1}=(1-\cos b) / b
$$

so this is the limit.

3C. Fundamental theorem of calculus

3C-1

$$
\int_{3}^{6}(x-2)^{-1 / 2} d x=\left.2(x-2)^{1 / 2}\right|_{3} ^{6}=2\left[(4)^{1 / 2}-1^{1 / 2}\right]=2
$$

$\mathbf{3 C - 2}$ a) $\left.(2 / 3)(1 / 3)(3 x+5)^{3 / 2}\right|_{0} ^{2}=(2 / 9)\left(11^{3 / 2}-5^{3 / 2}\right)$
b) If $n \neq-1$, then

$$
\left.(1 /(n+1))(1 / 3)(3 x+5)^{n+1}\right|_{0} ^{2}=(1 / 3(n+1))\left(\left(11^{n+1}-5^{n+1}\right)\right.
$$

If $n=-1$, then the answer is $(1 / 3) \ln (11 / 5)$.
c) $\left.(1 / 2)(\cos x)^{-2}\right|_{3 \pi / 4} ^{\pi}=(1 / 2)\left[(-1)^{-2}-(-1 / \sqrt{2})^{-2}\right]=-1 / 2$
$\mathbf{3 C - 3} \quad$ a) $\left.(1 / 2) \ln \left(x^{2}+1\right)\right|_{1} ^{2}=(1 / 2)[\ln 5-\ln 2]=(1 / 2) \ln (5 / 2)$
b) $\left.(1 / 2) \ln \left(x^{2}+b^{2}\right)\right|_{b} ^{2 b}=(1 / 2)\left[\ln \left(5 b^{2}\right)-\ln \left(2 b^{2}\right)\right]=(1 / 2) \ln (5 / 2)$

3C-4 As $b \rightarrow \infty$,

$$
\int_{1}^{b} x^{-10} d x=-\left.(1 / 9) x^{-9}\right|_{1} ^{b}=-(1 / 9)\left(b^{-9}-1\right) \rightarrow-(1 / 9)(0-1)=1 / 9
$$

This integral is the area of the infinite region between the curve $y=x^{-10}$ and the x-axis for $x>0$.

3C-5
a) $\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-(\cos \pi-\cos 0)=2$
b) $\int_{0}^{\pi / a} \sin (a x) d x=-\left.(1 / a) \cos (a x)\right|_{0} ^{\pi / a}=-(1 / a)(\cos \pi-\cos 0)=2 / a$

3 C-6 a) $x^{2}-4=0$ implies $x= \pm 2$. So the area is

$$
\int_{-2}^{2}\left(x^{2}-4\right) d x=2 \int_{0}^{2}\left(x^{2}-4\right) d x=\frac{x^{3}}{3}-\left.4 x\right|_{0} ^{2}=\frac{8}{3}-4 \cdot 2=-16 / 3
$$

(We changed to the interval $(0,2)$ and doubled the integral because $x^{2}-4$ is even.) Notice that the integral gave the wrong answer! It's negative. This is because the graph $y=x^{2}-4$ is concave up and is below the x-axis in the interval $-2<x<2$. So the correct answer is $16 / 3$.
b) Following part (a), $x^{2}-a=0$ implies $x= \pm \sqrt{a}$. The area is

$$
\int_{-\sqrt{a}}^{\sqrt{a}}\left(a-x^{2}\right) d x=2 \int_{0}^{\sqrt{a}}\left(a-x^{2}\right) d x=2 a x-\left.\frac{x^{3}}{3}\right|_{0} ^{\sqrt{a}}=2\left(a^{3 / 2}-\frac{a^{3 / 2}}{3}\right)=\frac{4}{3} a^{3 / 2}
$$

3D. Second fundamental theorem

3D-1 Differentiate both sides;
left side $L(x): \quad L^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} \frac{d t}{\sqrt{a^{2}+x^{2}}}=\frac{1}{\sqrt{a^{2}+x^{2}}}$, by FT2;
right side $R(x): \quad R^{\prime}(x)=\frac{d}{d x}\left(\ln \left(x+\sqrt{a^{2}+x^{2}}\right)-\ln a\right)=\frac{1+\frac{x}{\sqrt{a^{2}+x^{2}}}}{x+\sqrt{a^{2}+x^{2}}}=$ $\frac{1}{\sqrt{a^{2}+x^{2}}}$

Since $L^{\prime}(x)=R^{\prime}(x)$, we have $L(x)=R(x)+C$ for some constant $C=L(x)-$ $R(x)$. The constant C may be evaluated by assigning a value to x; the most convenient choice is $x=0$, which gives
$L(0)=\int_{0}^{0}=0 ; \quad R(0)=\ln \left(0+\sqrt{0+a^{2}}\right)-\ln a=0 ; \quad$ therefore $C=0$ and $L(x)=R(x)$.
b) Put $x=c$; the equation becomes $0=\ln \left(c+\sqrt{c^{2}+a^{2}}\right)$; solve this for c by first exponentiating both sides: $1=c+\sqrt{c^{2}+a^{2}}$; then subtract c and square both sides; after some algebra one gets $c=\frac{1}{2}\left(1-a^{2}\right)$.

3D-3 Sketch $y=\frac{1-t^{2}}{1+t^{2}}$ first, as shown at the right.

3D-4 a) $\int_{0}^{x} \sin \left(t^{3}\right) d t$, by the FT2.
b) $\int_{0}^{x} \sin \left(t^{3}\right) d t+2$
c) $\int_{1}^{x} \sin \left(t^{3}\right) d t-1$

3D-5 This problem reviews the idea of the proof of the FT2.
a) $f(t)=\frac{t}{\sqrt{1+t^{4}}}$

$$
\frac{1}{\Delta x} \int_{1}^{1+\Delta x} f(t) d t=\frac{\text { shaded area }}{\text { width }} \approx \text { height }
$$

$$
\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{1}^{1+\Delta x} f(t) d t=\lim _{\Delta x \rightarrow 0} \frac{\text { shaded area }}{\text { width }}=\text { height }=f(1)=\frac{1}{\sqrt{2}}
$$

b) By definition of derivative,

$$
F^{\prime}(1)=\lim _{\Delta x \rightarrow 0} \frac{F(1+\Delta x)-F(1)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{1}^{1+\Delta x} f(t) d t
$$

by FT2, $\quad F^{\prime}(1)=f(1)=\frac{1}{\sqrt{2}}$.

3D-6 a) If $F_{1}(x)=\int_{a_{1}}^{x} d t$ and $F_{2}(x)=\int_{a_{2}}^{x} d t$, then $F_{1}(x)=x-a_{1}$ and $F_{2}(x)=$ $x-a_{2}$. Thus $F_{1}(x)-F_{2}(x)=a_{2}-a_{1}$, a constant.
b) By the FT2, $F_{1}^{\prime}(x)=f(x)$ and $F_{2}^{\prime}(x)=f(x)$; therefore $F_{1}=F_{2}+C$, for some constant C.

3D-7 a) Using the FT2 and the chain rule, as in the Notes,
$\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{u} \sin u d u=\sqrt{x^{2}} \sin \left(x^{2}\right) \cdot \frac{d\left(x^{2}\right)}{d x}=2 x^{2} \sin \left(x^{2}\right)$
b) $=\frac{1}{\sqrt{1-\sin ^{2} x}} \cdot \cos x=1 . \quad\left(\right.$ So $\left.\int_{0}^{\sin x} \frac{d t}{1-t^{2}}=x\right)$
c) $\frac{d}{d x} \int_{x}^{x^{2}} \tan u d u=\tan \left(x^{2}\right) \cdot 2 x-\tan x$

3D-8 a) Differentiate both sides using FT2, and substitute $x=\pi / 2: f(\pi / 2)=4$.
b) Substitute $x=2 u$ and follow the method of part (a); put $u=\pi$, get finally $f(\pi / 2)=4-4 \pi$.

3E. Change of Variables; Estimating Integrals

3E-1 $L\left(\frac{1}{a}\right)=\int_{1}^{1 / a} \frac{d t}{t}$. Put $t=\frac{1}{u}, d t=-\frac{1}{u^{2}} d u$. Then

$$
\frac{d t}{t}=-\frac{u}{u^{2}} d u \Longrightarrow L\left(\frac{1}{a}\right)=\int_{1}^{1 / a} \frac{d t}{t}=-\int_{1}^{a} \frac{d u}{u}=-L(a)
$$

$\mathbf{3 E - 2}$ a) We want $-t^{2}=-u^{2} / 2$, so $u=t \sqrt{2}, d u=\sqrt{2} d t$.

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-u^{2} / 2} d u=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x / \sqrt{2}} e^{-t^{2}} \sqrt{2} d t=\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{2}} e^{-t^{2}} d t \\
& \Longrightarrow E(x)=\frac{1}{\sqrt{\pi}} F(x / \sqrt{2}) \quad \text { and } \quad \lim _{x \rightarrow \infty} E(x)=\frac{1}{\pi} \cdot \frac{\sqrt{\pi}}{2}=\frac{1}{2}
\end{aligned}
$$

b) The integrand is even, so

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \int_{-N}^{N} e^{-u^{2} / 2} d u=\frac{2}{\sqrt{2 \pi}} \int_{0}^{N} e^{-u^{2} / 2} d u=2 E(N) \longrightarrow 1 \quad \text { as } N \rightarrow \infty \\
\lim _{x \rightarrow-\infty} E(x)=-1 / 2 \quad \text { because } E(x) \text { is odd }
\end{gathered}
$$

$\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-u^{2} / 2} d u=E(b)-E(a) \quad$ by FT1 or by "interval addition" Notes PI (3).
Commentary: The answer is consistent with the limit,

$$
\frac{1}{\sqrt{2 \pi}} \int_{-N}^{N} e^{-u^{2} / 2} d u=E(N)-E(-N)=2 E(N) \longrightarrow 1 \text { as } N \rightarrow \infty
$$

$\mathbf{3 E - 3}$ a) Using $u=\ln x, d u=\frac{d x}{x}, \int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x=\int_{0}^{1} \sqrt{u} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{1}=$ $\frac{2}{3}$.

$$
\frac{2}{3}
$$

b) Using $u=\cos x, d u=-\sin x$,

$$
\int_{0}^{\pi} \frac{\sin x}{(2+\cos x)^{3}} d x=\int_{1}^{-1} \frac{-d u}{(2+u)^{3}}=\left.\frac{1}{2(2+u)^{2}}\right|_{1} ^{-1}=\frac{1}{2}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)=\frac{4}{9} .
$$

c) $U \operatorname{sing} x=\sin u, d x=\cos u d u, \int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\int_{0}^{\frac{\pi}{2}} \frac{\cos u}{\cos u} d u=\left.u\right|_{0} ^{\pi / 2}=\frac{\pi}{2}$

3E-4 Substitute $x=t / a$; then $x= \pm 1 \Rightarrow t= \pm a$. We then have
$\frac{\pi}{2}=\int_{-1}^{1} \sqrt{1-x^{2}} d x=\int_{-a}^{a} \sqrt{1-\frac{t^{2}}{a^{2}}} \frac{d t}{a}=\frac{1}{a^{2}} \int_{-a}^{a} \sqrt{a^{2}-t^{2}} d t$. Multiplying by a^{2} gives the value $\pi a^{2} / 2$ for the integral, which checks, since the integral represents the area of the semicircle.

3E-5 One can use informal reasoning based on areas (as in Ex. 5, Notes FT), but it is better to use change of variable.
a) Goal: $F(-x)=-F(x)$. Let $t=-u, d t=-d u$, then

$$
F(-x)=\int_{0}^{-x} f(t) d t=\int_{0}^{x} f(-u)(-d u)
$$

Since f is even $(f(-u)=f(u)), F(-x)=-\int_{0}^{x} f(u) d u=-F(x)$.
b) Goal: $F(-x)=F(x)$. Let $t=-u, d t=-d u$, then

$$
F(-x)=\int_{0}^{-x} f(t) d t=\int_{0}^{x} f(-u)(-d u)
$$

Since f is odd $\left((f(-u)=-f(u)), F(-x)=\int_{0}^{x} f(u) d u=F(x)\right.$.
$\mathbf{3 E - 6}$ a) $x^{3}<x$ on $(0,1) \Rightarrow \frac{1}{1+x^{3}}>\frac{1}{1+x}$ on $(0,1)$; therefore

$$
\int_{0}^{1} \frac{d x}{1+x^{3}}>\int_{0}^{1} \frac{d x}{1+x}=\left.\ln (1+x)\right|_{0} ^{1}=\ln 2=.69
$$

b) $0<\sin x<1$ on $(0, \pi) \Rightarrow \sin ^{2} x<\sin x$ on $(0, \pi)$; therefore

$$
\int_{0}^{\pi} \sin ^{2} x d x<\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-(-1-1)=2
$$

c) $\int_{10}^{20} \sqrt{x^{2}+1} d x>\int_{10}^{20} \sqrt{x^{2}} d x=\left.\frac{x^{2}}{2}\right|_{10} ^{20}=\frac{1}{2}(400-100)=150$

3E-7 $\left|\int_{1}^{N} \frac{\sin x}{x^{2}} d x\right| \leq \int_{1}^{N} \frac{|\sin x|}{x^{2}} d x \leq \int_{1}^{N} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{N}=-\frac{1}{N}+1<1$.
3F. Differential Equations: Separation of Variables. Applications
$\mathbf{3 F - 1}$ a) $y=(1 / 10)(2 x+5)^{5}+c$
b) $(y+1) d y=d x \Longrightarrow \int(y+1) d y=\int d x \Longrightarrow(1 / 2)(y+1)^{2}=x+c$. You can leave this in implicit form or solve for $y: y=-1 \pm \sqrt{2 x+a}$ for any constant a ($a=2 c$)
c) $y^{1 / 2} d y=3 d x \Longrightarrow(2 / 3) y^{3 / 2}=3 x+c \quad \Longrightarrow \quad y=(9 x / 2+a)^{2 / 3}$, with $a=(3 / 2) c$.
d) $y^{-2} d y=x d x \Longrightarrow-y^{-1}=x^{2} / 2+c \Longrightarrow y=-1 /\left(x^{2} / 2+c\right)$

3F-2 a) Answer: $3 e^{16}$.

$$
\begin{gathered}
y^{-1} d y=4 x d x \Longrightarrow \ln y=2 x^{2}+c \\
y(1)=3 \Longrightarrow \ln 3=2+c \Longrightarrow c=\ln 3-2
\end{gathered}
$$

Therefore

$$
\ln y=2 x^{2}+(\ln 3-2)
$$

At $x=3, y=e^{18+\ln 3-2}=3 e^{16}$
b) Answer: $y=11 / 2+3 \sqrt{2}$.

$$
\begin{aligned}
& (y+1)^{-1 / 2} d y=d x \Longrightarrow 2(y+1)^{1 / 2}=x+c \\
& y(0)=1 \Longrightarrow 2(1+1)^{1 / 2}=c \Longrightarrow c=2 \sqrt{2}
\end{aligned}
$$

At $x=3$,

$$
2(y+1)^{1 / 2}=3+2 \sqrt{2} \Longrightarrow y+1=(3 / 2+\sqrt{2})^{2}=13 / 2+3 \sqrt{2}
$$

Thus, $y=11 / 2+3 \sqrt{2}$.
c) Answer: $y=\sqrt{550 / 3}$

$$
\begin{gathered}
y d y=x^{2} d x \Longrightarrow y^{2} / 2=(1 / 3) x^{3}+c \\
y(0)=10 \Longrightarrow c=10^{2} / 2=50
\end{gathered}
$$

Therefore, at $x=5$,

$$
y^{2} / 2=(1 / 3) 5^{3}+50 \Longrightarrow y=\sqrt{550 / 3}
$$

d) Answer: $y=(2 / 3)\left(e^{24}-1\right)$

$$
\begin{aligned}
(3 y+2)^{-1} d y=d x & \Longrightarrow(1 / 3) \ln (3 y+2)=x+c \\
y(0)=0 & \Longrightarrow(1 / 3) \ln 2=c
\end{aligned}
$$

Therefore, at $x=8$,
$(1 / 3) \ln (3 y+2)=8+(1 / 3) \ln 2 \Longrightarrow \ln (3 y+2)=24+\ln 2 \Longrightarrow(3 y+2)=2 e^{24}$
Therefore, $y=\left(2 e^{24}-2\right) / 3$
e) Answer: $y=-\ln 4$ at $x=0$. Defined for $-\infty<x<4$.

$$
\begin{gathered}
e^{-y} d y=d x \Longrightarrow-e^{-y}=x+c \\
y(3)=0 \Longrightarrow-e^{0}=3+c \Longrightarrow c=-4
\end{gathered}
$$

Therefore,

$$
y=-\ln (4-x), \quad y(0)=-\ln 4
$$

The solution y is defined only if $x<4$.

3F-3 a) Answers: $y(1 / 2)=2, y(-1)=1 / 2, y(1)$ is undefined.

$$
\begin{gathered}
y^{-2} d y=d x \Longrightarrow-y^{-1}=x+c \\
y(0)=1 \Longrightarrow-1=0+c \Longrightarrow c=-1
\end{gathered}
$$

Therefore, $-1 / y=x-1$ and

$$
y=\frac{1}{1-x}
$$

The values are $y(1 / 2)=2, y(-1)=-1 / 2$ and y is undefined at $x=1$.
b) Although the formula for y makes sense at $x=3 / 2, \quad(y(3 / 2)=1 /(1-3 / 2)=$ $-2)$, it is not consistent with the rate of change interpretation of the differential equation. The function is defined, continuous and differentiable for $-\infty<x<1$. But at $x=1, y$ and $d y / d x$ are undefined. Since $y=1 /(1-x)$ is the only solution to the differential equation in the interval $(0,1)$ that satisfies the initial condition $y(0)=1$, it is impossible to define a function that has the initial condition $y(0)=1$ and also satisfies the differential equation in any longer interval containing $x=1$.

To ask what happens to y after $x=1$, say at $x=3 / 2$, is something like asking what happened to a rocket ship after it fell into a black hole. There is no obvious reason why one has to choose the formula $y=1 /(1-x)$ after the "explosion." For example, one could define $y=1 /(2-x)$ for $1 \leq x<2$. In fact, any formula $y=1 /(c-x)$ for $c \geq 1$ satisfies the differential equation at every point $x>1$.

3F-4 a) If the surrounding air is cooler $\left(T_{e}-T<0\right)$, then the object will cool, so $d T / d t<0$. Thus $k>0$.
b) Separate variables and integrate.

$$
\left(T-T_{e}\right)^{-1} d T=-k d t \underset{11}{\Longrightarrow} \ln \left|T-T_{e}\right|=-k t+c
$$

Exponentiating,

$$
T-T_{e}= \pm e^{c} e^{-k t}=A e^{-k t}
$$

The initial condition $T(0)=T_{0}$ implies $A=T_{0}-T_{e}$. Thus

$$
T=T_{e}+\left(T_{0}-T_{e}\right) e^{-k t}
$$

c) Since $k>0, e^{-k t} \rightarrow 0$ as $t \rightarrow \infty$. Therefore,

$$
T=T_{e}+\left(T_{0}-T_{e}\right) e^{-k t} \longrightarrow T_{e} \text { as } t \rightarrow \infty
$$

d)

$$
T-T_{e}=\left(T_{0}-T_{e}\right) e^{-k t}
$$

The data are $T_{0}=680, T_{e}=40$ and $T(8)=200$. Therefore,

$$
200-40=(680-40) e^{-8 k} \Longrightarrow e^{-8 k}=160 / 640=1 / 4 \Longrightarrow-8 k=-\ln 4 .
$$

The number of hours t that it takes to cool to 50° satisfies the equation

$$
50-40=(640) e^{-k t} \Longrightarrow e^{-k t}=1 / 64 \Longrightarrow-k t=-3 \ln 4
$$

To solve the two equations on the right above simultaneously for t, it is easiest just to divide the bottom equation by the top equation, which gives

$$
\frac{t}{8}=3, \quad t=24
$$

e)

$$
T-T_{e}=\left(T_{0}-T_{e}\right) e^{-k t}
$$

The data at $t=1$ and $t=2$ are

$$
800-T_{e}=\left(1000-T_{e}\right) e^{-k} \quad \text { and } \quad 700-T_{e}=\left(1000-T_{e}\right) e^{-2 k}
$$

Eliminating e^{-k} from these two equations gives

$$
\begin{aligned}
\frac{700-T_{e}}{1000-T_{e}} & =\left(\frac{800-T_{e}}{1000-T_{e}}\right)^{2} \\
\left(800-T_{e}\right)^{2} & =\left(1000-T_{e}\right)\left(700-T_{e}\right) \\
800^{2}-1600 T_{e}+T_{e}^{2} & =(1000)(700)-1700 T_{e}+T_{e}^{2} \\
100 T_{e} & =(1000)(700)-800^{2} \\
T_{e} & =7000-6400=600
\end{aligned}
$$

f) To confirm the differential equation:

$$
y^{\prime}(t)=T^{\prime}\left(t-t_{0}\right)=k\left(T_{e}-T\left(t-t_{0}\right)\right)=k\left(T_{e}-y(t)\right)
$$

The formula for y is

$$
y(t)=T\left(t-t_{0}\right)=T_{e}+\left(T_{0}-T_{e}\right) e^{-k\left(t-t_{0}\right)}=a+\left(y\left(t_{0}\right)-a\right) e^{-c\left(t-t_{0}\right)}
$$

with $k=c, T_{e}=a$ and $T_{0}=T(0)=y\left(t_{0}\right)$.

3F-6 $y=\cos ^{3} u-3 \cos u, x=\sin ^{4} u$

$$
\begin{aligned}
& d y=\left(3 \cos ^{2} u \cdot(-\sin u)+3 \sin u\right) d u, d x=4 \sin ^{3} u \cos u d u \\
& \frac{d y}{d x}=\frac{3 \sin u\left(1-\cos ^{2} u\right)}{4 \sin ^{3} u \cos u}=\frac{3}{4 \cos u} \\
& \mathbf{3 F - 7} \text { a) } y^{\prime}=-x y ; y(0)=1 \\
& \frac{d y}{y}=-x d x \Longrightarrow \ln y=-\frac{1}{2} x^{2}+c
\end{aligned}
$$

To find c , put $x=0, y=1: \ln 1=0+c \Longrightarrow c=0$.

$$
\Longrightarrow \ln y=-\frac{1}{2} x^{2} \Longrightarrow y=e^{-x^{2} / 2}
$$

b) $\cos x \sin y d y=\sin x d x ; y(0)=0$

$$
\sin y d y=\frac{\sin x}{\cos x} d x \Longrightarrow-\cos y=-\ln (\cos x)+c
$$

Find c: put $x=0, y=0:-\cos 0=-\ln (\cos 0)+c \Longrightarrow c=-1$

$$
\Longrightarrow \cos y=\ln (\cos x)+1
$$

3F-8 a) From the triangle, $y^{\prime}=$ slope tangent $=\frac{y}{1}$

$$
\Longrightarrow \frac{d y}{y}=d x \Longrightarrow \ln y=x+c_{1} \Longrightarrow y=e^{x+c_{1}}=A e^{x} \quad\left(A=e^{c_{1}}\right)
$$

b) If P bisects tangent, then P_{0} bisects OQ (by euclidean geometry)

So $P_{0} Q=x\left(\right.$ since $\left.O P_{0}=x\right)$.

$$
\begin{aligned}
& \text { Slope tangent }=y^{\prime}=\frac{-y}{x} \Longrightarrow \frac{d y}{y}=-\frac{d x}{x} \\
& \Longrightarrow \ln y=-\ln x+c_{1}
\end{aligned}
$$

Exponentiate: $y=\frac{1}{x} \cdot e^{c_{1}}=\frac{c}{x}, c>0$

Ans: The hyperbolas $y=\frac{c}{x}, c>0$

3G. Numerical Integration

3G-1 Left Riemann sum: $(\Delta x)\left(y_{0}+y_{1}+y_{2}+y_{3}\right)$

Trapezoidal rule: $(\Delta x)\left((1 / 2) y_{0}+y_{1}+y_{2}+y_{3}+(1 / 2) y_{4}\right)$

Simpson's rule: $(\Delta x / 3)\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$
a) $\Delta x=1 / 4$ and

$$
y_{0}=0, y_{1}=1 / 2, y_{2}=1 / \sqrt{2}, y_{3}=\sqrt{3} / 2, y_{4}=1
$$

Left Riemann sum: $(1 / 4)(0+1 / 2+1 / \sqrt{2}+\sqrt{3} / 2) \approx .518$

Trapezoidal rule: $(1 / 4)((1 / 2) \cdot 0+1 / 2+1 / \sqrt{2}+\sqrt{3} / 2+(1 / 2) 1) \approx .643$

Simpson's rule: $(1 / 12)(1 \cdot 0+4(1 / 2)+2(1 / \sqrt{2})+4(\sqrt{3} / 2)+1) \approx .657$
as compared to the exact answer $.6666 \ldots$
b) $\Delta x=\pi / 4$

$$
y_{0}=0, y_{1}=1 / \sqrt{2}, y_{2}=1, y_{3}=1 / \sqrt{2}, y_{4}=0
$$

Left Riemann sum: $(\pi / 4)(0+1 / \sqrt{2}+1+1 / \sqrt{2}) \approx 1.896$

Trapezoidal rule: $(\pi / 4)((1 / 2) \cdot 0+1 / \sqrt{2}+1+1 / \sqrt{2}+(1 / 2) \cdot 0) \approx 1.896$ (same as Riemann sum)

Simpson's rule: $(\pi / 12)(1 \cdot 0+4(1 / \sqrt{2})+2(1)+4(1 / \sqrt{2})+1 \cdot 0) \approx 2.005$
as compared to the exact answer 2
c) $\Delta x=1 / 4$

$$
y_{0}=1, y_{1}=16 / 17, y_{2}=4 / 5, y_{3}=16 / 25, y_{4}=1 / 2
$$

Left Riemann sum: $(1 / 4)(1+16 / 17+4 / 5+16 / 25) \approx .845$

Trapezoidal rule: $(1 / 4)((1 / 2) \cdot 1+16 / 17+4 / 5+16 / 25+(1 / 2)(1 / 2)) \approx .8128$

Simpson's rule: $(1 / 12)(1 \cdot 1+4(16 / 17)+2(4 / 5)+4(16 / 25)+1(1 / 2)) \approx .785392$
as compared to the exact answer $\pi / 4 \approx .785398$
(Multiplying the Simpson's rule answer by 4 gives a passable approximation to π, of 3.14157 , accurate to about 2×10^{-5}.)
d) $\Delta x=1 / 4$

$$
y_{0}=1, y_{1}=4 / 5, y_{2}=2 / 3, y_{3}=4 / 7, y_{4}=1 / 2
$$

Left Riemann sum: $(1 / 4)(1+4 / 5+2 / 3+4 / 7) \approx .76$

Trapezoidal rule: $(1 / 4)((1 / 2) \cdot 1+4 / 5+2 / 3+4 / 7(1 / 2)(1 / 2)) \approx .697$

Simpson's rule: $(1 / 12)(1 \cdot 1+4(4 / 5)+2(2 / 3)+4(4 / 7)+1(1 / 2)) \approx .69325$

Compared with the exact answer $\ln 2 \approx .69315$, Simpson's rule is accurate to about 10^{-4}.

3G-2 We have $\int_{0}^{b} x^{3} d x=\frac{b^{4}}{4}$. Using Simpson's rule with two subintervals, $\Delta x=$ $b / 2$, so that we get the same answer as above: ${ }^{1}$

$$
S\left(x^{3}\right)=\frac{b}{6}\left(0+4(b / 2)^{3}+b^{3}\right)=\frac{b}{6}\left(\frac{3}{2} b^{3}\right)=\frac{b^{4}}{4} .
$$

3G-3 The sum

$$
S=\sqrt{1}+\sqrt{2}+\ldots+\sqrt{10,000}
$$

is related to the trapezoidal estimate of $\int_{0}^{10^{4}} \sqrt{x} d x$:

$$
\begin{equation*}
\int_{0}^{10^{4}} \sqrt{x} d x \approx \frac{1}{2} \sqrt{0}+\sqrt{1}+\ldots+\frac{1}{2} \sqrt{10^{4}}=S-\frac{1}{2} \sqrt{10^{4}} \tag{1}
\end{equation*}
$$

But

$$
\int_{0}^{10^{4}} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{10^{4}}=\frac{2}{3} \cdot 10^{6}
$$

From (1),

$$
\begin{equation*}
\frac{2}{3} \cdot 10^{6} \approx S-50 \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
S \approx 666,717 \tag{3}
\end{equation*}
$$

In (1), we have $>$, as in the picture. Hence in (2), we have $>$, so in (3), we have $<$, Too high.

3G-4 As in Problem 3 above, let

$$
S=\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}
$$

Then by trapezoidal rule,

[^0]
$$
\int_{1}^{n} \frac{d x}{x} \approx \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2} \cdot \frac{1}{n}=S-\frac{1}{2}-\frac{1}{2 n}
$$

Since $\int_{1}^{n} \frac{d x}{x}=\ln n$, we have $S \approx \ln n+\frac{1}{2}+\frac{1}{2 n}$. (Estimate is too low.)

3G-5 Referring to the two pictures above, one can see that if $f(x)$ is concave down on $[a, b]$, the trapezoidal rule gives too low an estimate; if $f(x)$ is concave up, the trapezoidal rule gives too high an estimate..

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The fact that Simpson's rule is exact on cubic polynomials is very significant to its effectiveness as a numerical approximation. It implies that the approximation converges at a rate proportional to the the fourth derivative of the function times $(\Delta x)^{4}$, which is fast enough for many practical purposes.

