Derivative of the Inverse of a Function

One very important application of implicit differentiation is to finding derivatives of inverse functions.

We start with a simple example. We might simplify the equation $y=\sqrt{x}$ $(x>0)$ by squaring both sides to get $y^{2}=x$. We could use function notation here to say that $y=f(x)=\sqrt{x}$ and $x=g(y)=y^{2}$.

In general, we look for functions $y=f(x)$ and $g(y)=x$ for which $g(f(x))=$ x. If this is the case, then g is the inverse of f (we write $g=f^{-1}$) and f is the inverse of g (we write $f=g^{-1}$).

How are the graphs of a function and its inverse related? We start by graphing $f(x)=\sqrt{x}$. Next we want to graph the inverse of f, which is $g(y)=x$. But this is exactly the graph we just drew. To compare the graphs of the functions f and f^{-1} we have to exchange x and y in the equation for f^{-1}. So to compare $f(x)=\sqrt{x}$ to its inverse we replace y 's by x 's and graph $g(x)=x^{2}$.

Figure 1: The graph of f^{-1} is the reflection of the graph of f across the line $y=x$

In general, if you have the graph of a function f you can find the graph of f^{-1} by exchanging the x - and y-coordinates of all the points on the graph. In other words, the graph of f^{-1} is the reflection of the graph of f across the line $y=x$.

This suggests that if $\frac{d y}{d x}$ is the slope of a line tangent to the graph of f, then

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}
$$

is the slope of a line tangent to the graph of f^{-1}. We could use the definition of the derivative and properties of inverse functions to turn this suggestion into a proof, but it's easier to prove using implicit differentiation.

Let's use implicit differentiation to find the derivative of the inverse function:

$$
\begin{aligned}
y & =f(x) \\
f^{-1}(y) & =x \\
\frac{d}{d x}\left(f^{-1}(y)\right) & =\frac{d}{d x}(x)=1
\end{aligned}
$$

By the chain rule:

$$
\frac{d}{d y}\left(f^{-1}(y)\right) \frac{d y}{d x}=1
$$

so

$$
\frac{d}{d y}\left(f^{-1}(y)\right)=\frac{1}{\frac{d y}{d x}}
$$

Implicit differentiation allows us to find the derivative of the inverse function $x=f^{-1}(y)$ whenever we know the derivative of the original function $y=f(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

