Example 2. $f(x)=x^{n}$ where $n=1,2,3 \ldots$
In this example we answer the question "What is $\frac{d}{d x} x^{n}$ ?" Once we know the answer we can use it to, for example, find the derivative of $f(x)=x^{4}$ by replacing $n$ by 4 .

At this point in our studies, we only know one tool for finding derivatives the difference quotient. So we plug $y=f(x)$ into the definition of the difference quotient:

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\frac{\left(x_{0}+\Delta x\right)^{n}-x_{0}^{n}}{\Delta x}
$$

Because writing little zeros under all our $x$ 's is a nuisance and a waste of chalk (or of photons?), and because there's no other variable named $x$ to get confused with, from here on we'll replace $x_{0}$ with $x$.

$$
\frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}
$$

Remember that when we use the difference quotient, we're thinking of $x$ as fixed and of $\Delta x$ as getting closer to zero. We want to simplify this fraction so that we can plug in 0 for $\Delta x$ without any danger of dividing by zero. To do this we must expand the expression $(x+\Delta x)^{n}$.

A famous formula called the binomial theorem tells us that:

$$
(x+\Delta x)^{n}=(x+\Delta x)(x+\Delta x) \ldots(x+\Delta x) \quad \mathrm{n} \text { times }
$$

We can rewrite this as

$$
x^{n}+n(\Delta x) x^{n-1}+O\left((\Delta x)^{2}\right)
$$

where $O(\Delta x)^{2}$ is shorthand for "all of the terms with $(\Delta x)^{2},(\Delta x)^{3}$, and so on up to $(\Delta x)^{n}$."

One way to begin to understand this is to think about multiplying all the $x$ 's together from

$$
(x+\Delta x)^{n}=(x+\Delta x)(x+\Delta x) \ldots(x+\Delta x) \quad \mathrm{n} \text { times. }
$$

There are $n$ of these $x$ 's, so multiplying them together gives you one term of $x^{n}$. What if you only multiply together $n-1$ of the $x$ 's? Then you have one $(x+\Delta x)$ left that you haven't taken an $x$ from, and you can multiply your $x^{n-1}$ by $\Delta x$. (If you multiplied by $x$, you'd just have the $x^{n}$ that you already got.) There were $n$ different $\Delta x$ 's that you could have chosen to use, so you can get this result $n$ different ways. That's where the $n(\Delta x) x^{n-1}$ comes from.

We could keep going, and figure out how many different ways there are to multiply $n-2 x$ 's by two $\Delta x$ 's, and so on, but it turns out we don't need to. Every other way of multiplying together one thing from each $(x+\Delta x)$ gives you at least two $\Delta x$ 's, and $\Delta x \cdot \Delta x$ is going to be too small to matter to us as $\Delta x \rightarrow 0$.

Now that we have some idea of what $(x+\Delta x)^{n}$ is, let's go back to our difference quotient.

$$
\frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=\frac{\left(x^{n}+n(\Delta x)\left(x^{n-1}\right)+O(\Delta x)^{2}\right)-x^{n}}{\Delta x}=n x^{n-1}+O(\Delta x)
$$

As it turns out, we can simplify the quotient by canceling a $\Delta x$ in all of the terms in the numerator. When we divide a term that contains $\Delta x^{2}$ by $\Delta x$, the $\Delta x^{2}$ becomes $\Delta x$ and so our $O\left(\Delta x^{2}\right)$ becomes $O(\Delta x)$.

When we take the limit as $x$ approaches 0 we get:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=n x^{n-1}
$$

and therefore,

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

This result is sometimes called the "power rule". We will use it often to find derivatives of polynomials; for example,

$$
\frac{d}{d x}\left(x^{2}+3 x^{10}\right)=2 x+30 x^{9}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

