Main Formula

Figure 1: Geometric definition of the derivative

We started with a point P on the graph of $y=f(x)$ which had coordinates $\left(x_{0}, f\left(x_{0}\right)\right)$. We then found a point Q on the the graph which was Δx units to the right of P. The coordinates of Q must be $\left(x_{0}+\Delta x, f\left(x_{0}+\Delta x\right)\right)$. We can now write the following formula for the derivative:

$$
m=\underbrace{f^{\prime}\left(x_{0}\right)}_{\text {derivative of } f \text { at } x_{0}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \underbrace{\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}}_{\text {difference quotient }}
$$

This is by far the most important formula in Lecture 1; it is the formula that we use to compute the derivative $f^{\prime}\left(x_{0}\right)$, which equals the slope of the tangent line to the graph at P. A machine could use this formula together with the coordinates $\left(x_{0}, f\left(x_{0}\right)\right)$ of the point P to draw the tangent line to the graph of $y=f(x)$ at the point P.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

