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Integers and exponents

Definition. A set of real numbers is called an inductive

(a) The number 1 1is in the set.

(b) For every x 1in the set, the number x + 1 1is in
the set also.

The set R+ of positive real numbers is an example of an
inductive set. [The number 1 is in R* because 1 > 0. And
if x is im R’ (so that x > 0), them x + 1 is in R’
(since x + 1 > 1 > 0).] '

Definition. A real number that belongs to every
inductive set is called a pogitive integer; such a number is
necessarily positive because R+ is an inductive set.

Let P denote the set of positive integers. We prove

some basic properties of this set.

Theorem 1. Every element of P is greater than or equal

Proof. We shall show that the set A of all real
numbers greater than or equal to 1 1is inductive. It then
follows that every poqitive integer belongs to this set.

The number 1 belongs to the set A, since 1 > 1.
Suppose  x bélonga to the set A. Themn x > 1l; it follows
that x + 1 > 1 +1 > 1, so that x_+.1 belongs to the set A.

Thus A is inductive. 0O



Theorem 2. 1 is in P.

Proof. 1 belongs to every inductive set (by definition

of "inductive.") Hence 1 belongs to P (by definition of

P)a u
Theorem 3. If x is in P, so is x + 1.
Proof. Suppose that x is a given element of P. Let

I be an arbitrary inductive set. Then x is in I (by
definition of P). Hence x + 1 1is in I (by definition of
"inductive"). Since I is arbitrary, x + 1 is in I for
every inductive set I. We conclude that x + 1 1is in P. (by
definition of P). @

Theorem 4 (Principle of induction). et S be a set of

positive integers. If 1 is in S, and if for every x in
S, x + 1 is also in S, then necessarily S contains every
positive integer.

Proof. S 1is inductive, by hypothesis. Therefore every
‘positive integer is in S, by definition of P. @

Now we show that P i§ closed under addition and
multiplication.

Theorem 5. If a and b are in P, s0 is a + b.

. Proof. Llet a be a fixed positive integer. Then we let

S be the set of all positive integers .b for which a + b is

a positive integer. We shall show that S contains all



positive integers; then the theorem is proved. We use the

principle of induction.

The number 1 is in S, because a + 1 is a positive
integer (by Theorem 3). Given an element b in S, we show
that b + 1 is in S. Now a +b 1is a positive integer by

hypothesis; hence (a+b) + 1 is a positive integer by Theoren
3. Thus a + (b+1) is a positive integer, so b + 1 belongs
to S, by definition of §. Thus S is inductive. a

Theorem 6. If a and b are in P, S0 is a . b.

The proof is left as an exercise,

Definition. A number x is called an integer if it is
0, or is a positive integer,.or is the negative of abpositive
integer. It is easy to see that the negative of any integer is
an integer, since -(-a) = a and -0 = 0.

Let 2Z denote the set of integers. We now show that zZ
is closed under addition, nultiplicafion, and subtraction.
Closure under multiplication is easy, so we leave the proof as
an exercise:‘

Theorem 7.

dlosure under addition and subtractiqn are more

=

a and b are in 2, so i a -b. 1o

difficult:
Theorem 8. If a and b are in Z, 30 are a + b an
a —- b.

Proof. We proceed in several steps.
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Step 1. We show that the theorem is true in the case
where a 1is a positive integer and b = 1. That is, if a is
a positive in;eger, we show that a + 1 and a - 1 are
integérs. That a + 1 1is an integer (in fact, a positive
integer) has already been proved. We prove that a - 1 is an
integer, by induction on a. It is true if a = 1, since
a-1=0 if a = 1. Supposing it true for a, we prove it
~true for a + 1. That is, we show (a+l) - 1 is an integer.
But that is trivial, since (a+l) - 1 = a, which is an integer
by hypothesis (in fact, a positive integer).

Step 2. We show the theorem is true if a is any
integer and b = 1.

We consider three cases. If a is a positive integer,
this result follows from Step 1. If a = 0, the result is

immediate, since
0+1 =1 and 0 -1= -1.

Finally, suppose a = -c, where ¢ is a positive integer.

Then
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Both ¢ -1 and ¢ + 1 are int
and a - 1 are also integers.
Step 3. We show the theo
integer and b is a positive in
We proceed by induction o
know the theorem holds if b =1
holds for b, we show it holds
that a + (b+l) and a - (b+1)
a + (b+1l) =
a - (b+l) =
Both a + b and a - b

hypothesis; then Step 2 applies

(a-b) - 1 are integers.
Step 4. The theorem is t
integer. The case where b is
- in Step 3, and the case where b
finally the case where b = -d,
intezefl Then
a+b=a-4d an

A5

egers, by Step l; then a +

rem is true if a ig any

teger.

n b, holding a fixed. We

s by Step 2. Supposing it

for b + 1. That is, we show

are integers. Now
(a+b) + 1,

(a-b) - 1.

are integers, by the induction

to show that (a+b) + 1 and

rue in general. Let a be any

a positive integer was treated

= 0 is trivial. Consider
where d is a positive
d a-b=a+ d;
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Step 3 applies to show that both a - d and a + d are
integers. éu

Now we prove the "obvious"” fact that if n 1is an
integer, then n + 1 is the "next" integer after n:

Theorem 9. f n is i Z and n < a < n+l, then a

is not in

Z.
roof. From the hypothesis of the theorem, it follows

o

that
0 < a-n < 1.

If a were in Z, then a - n would be an integer, by the
preceding theorem. But 1 is the smallest positive integer, by
Theorem 1. Therefore a is not in 2. O .
Now we define integral exponents.
Definition. Let a be any resal number. We define an,

when n is a positive integer, by induction, as follows. We

.define

and supposing a® is defined, we define



Then a is defined for every positive infeger n. The number
n in this expression is called the exponent, and the number g
is called the base.

Exponents satisfy three basic laws, which are stated in
the following three theorems. They are called the laws of
exponents.

Theorem 10. a® . g% = an+m‘

R;QQQ. Let a and n be fixed. We prove the theorem
"Sy induction on m." The theoren_is true for m = 1, since
a® . al = a® . a = an+l by definition. Suppose it is true for
m; we show it is true for m + 1. It follows that it holds for

all m. We have

(an~a) by definition,

a -+ a = a .
= (an»a.) - a by associativity of multiplication,
- n+m : . . R
= (a ) - a by the induction hypothesis,

= af0*tm)+1 by definition,

n+(m+1)

= a by associativity of addition.

Thus the theorem is proved for =m + 1, as desired. @



Similar proofs hold for the following two theorems, whose

proofs are left as exercises:

(an)m nm

Theorem 11. = a . O
Theorem 12. a". b% = (a-b)". o

Now we define negative exponents.

Definition. Let a be a real number different from
zero. We define zero and negative exponents by the rules:

ao = 1,

-n n . . s .

a = 1/(a”) if n 1is a positive integer.

Theorem 13. The "laws of exponents" hold when n and m
are arbitrary integers, provided a and b are non-zero.

The proof is left as an exercise.

Later on, (in Section G) we shall extend this definition
to define "rational exponents"™; that is, we shall define af
when a is positive and r is rational. Still later (in
Section M), we shall extend the definition still further to
define a* when a is positive and x is an arbitrary real

number. - In each of these cases, the same three laws of

exponents will hold.
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Exercisges

1. Prove Theorems 6 and 7.

2. Prove Theorems 11 and 12.

3. Show that if a set A of integers is bounded above,
then A has a largest element. [Hint: Use the
least upper bound axiom. ]

4. Let F be the set of all real numbers of the form
a + blZ, where a and b are rational. Show that
F is closed under addition, subtraction, multiplica-
tion, and division. Conclude that F is an "ordered
field”, that is, that F satisfies Axioms 1 - 9,
Show that F does not contain 7.

5. Let n and m be positive integers; let a and b
be non-zero real numbers. Let P be any integer.
Given that the laws of exponents hold for bositive
integral exponents, prove them for arbitrary integral
exponents as follows:

(a) Show aa™™ = an-n' in the three cases
B -m>0 and n-m =0 and n -m < 0.

(b) Show a "a™™ = a ™™, and a%P = oP,

(c) Show (a")™™® = o™O® . (DR

(d) Show (a )™ = g®®  apn4 (a®)P = (aP)° = a9,

(e) Show a Pp70 - (ab)™™, and a%° = (ab)®,
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6. Let a and h be real numbers; let m be a
positive integer. Show by induction that if a and

a + h are positive, then

m m—lh

(a+h).m > a + ma

3

[Note: Be explicit about where you use the fact that
a and a + h are positive. Note that h is not

assumed to be positive.]

We shall ﬁse this result later on.
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Square roots, and the existence of irrational numbers.

Definition. If b2 = a, then we say that b is a square root of a.
A negative number has no square root (see Theorem I .20), and the number 0 hag
- only one square root, namely 0. We shall show that a positive real number has exactly

two square roots, one positive and one negative.

Theorem. Let a > 0. Then there is a number b > 0 such that b2 = a.

Proof. Step 1. Let x and y be positive numbers. Then x < y if and only if 2 <

Y2~
If x < y, we multiply both sides, first by x and then by y, to obtain the
inequalities
» Xx-x<y-x and y:-x<y-.y.
Thus x2 < y2 . Conversely if x2 < y2, then it cannot be true that x = y (for that would

imply <2 = y2), or that y < x (for that would imply, by what we just proved, that

y2 < x2). Hence we must havex < y.

Step 2. We construct b as follows: Consider the set

2

S={x|x>0 and x“<a}.

\ )

ke L A 35000

S

The set S is nonempty; indeed if x is a number such that 0 < x < 1 and x < a, then

x2<ax$a-1=a,

so that x is in S. Furthermore, S is bounded above; indeed, 1 + a is an upper bound on S
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Forif xisin S, then x2 < a; since
a<1+2+a’=(1+a)
it follows from Step 1 that x < 1 + a.
Let b denote the supremum of S; we show that b2 = a We verify this fact by
showing that neither inequality b2 <aor b2 > a can hold.
Step 3. Assume ﬁrst that b2 < a. We shall show that there is a positive number
h such that (b+h)? < a. It then follows that b + h belongs to S (by definition of ),

contradicting the fact that b is an upper bound for S.

1

I

1

T
4 444
To find h, we proceed as follows: The inequality (b+h)2 < a is equivalent to the

43‘2&4

inequality
h(2b+h) < a—bZ.
Now a — b2 is positive; it seems reasonable that if we take h to be sufficiently small, this
inequality will hold. Specifically, we first specify that h < 1; then we have
| h(2b+h) < h(2b+1).
It is then easy to see how small h should be; if we choose h < (a—b2)/(2b+1), then
h(2b+1) < a — b2
and we are finished.
Step 4. Now assume that »bz > a. We shall show that there is a number h such

that 0 < h < b and (b—h)2 > a. It follows that b — h is an upper bound for S: For
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if x is in S, then a > x2, so that (b—h)2 > x2, whence by Step 1, b — h > x. This
contradicts the fact that b is the least upper bound for S.

To find h, we proceed as follows: The inequality (b—h)2 > ais equi§ale’nt to the
inequality

h(2b-h) < b% —a.
Now b2 — a is positive; it seems reasonable that if h is sufficiently small, this inequality
will hold. Our first requirement is that 0 < h < b. Then we note that h(2b—h) = 2hb —
h? < 2hb. It is now easy to see how small h should be; if we choose h < (b2-a.)/ 2b, then
2hb < b? -2

and we are finished. o

Corollary. Ifa > 0, then a has ezactly two square roots.

We denote the positive square root of a by ya. »
Proof. Let b > 0 and b2 = a. Then (-—b)2 = a. Thus a has at least two square
roots, b and —b. Conversely, if ¢ is any square root of a, then c2 = a, whence
(b+c)(b—)-= b% —¢? = 0.
It follows that c = —-borc=b. o ’

We now demonstrate the existence of irrational numbers.

Theorem. Let a be a positive integer; let b = 2. Then either b is a positive integer

orb is irrational.

Proof. éuppose that b = 4 and b is a rational number that is not an integer.
We derive a contradiction.

Let us write b = m/n, where m and n are positive integers and n is as small as
possible. (I.e., we choose n to be -the smallest positive integer such that nb is an infeger,
and we set m = nb.)

Choose q to be the unique integer such that
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qg<m/n<qg+l.
Then
gn<m<qgn-+n, Or
*) 0<m-gn<n.

We compute as follows:

(m/n)2 =b? = a,

m2 = n2a

m(m—qn) = n(na—qm).

Then using (*), we can write

po @ Ra—gm
“n~ m—qn’

This equation expresses b as a ratio of positive integers; and by (*) the denominator is

less than n. Thus we reach a contradiction. o

Corollary. 2 is irrational.

Proof. Let b = 2. Then b cannot be an integer, for the square of 1 equals 1

while the square of any integer greater than 1 is at least 4. It follows that b is irrational.

o

The same proof shows that the number yn is irrational whenever n is a positive

integer less than 100 that is not one of the integers 1, 4, 9, 16, 25, 36, 49, 64, or 81.



The Riemann condition.

The most useful criterion for determining whether £ is
integrable on [a,b] 1is given in the following theorem. It is

called the Riemann condition for existence of the integral.

Theorem 1. Suppose f 1is defined on ({a,b]. Then £

is integrable on [a,b] if and only if given any € > 0, there

exist, correspondingly, step functions s and t, with

s< f<t on [abl, such that

Proof. We know from Theorem 1.9 of the text (p. 74)

that

provided s and t are step functions such that s < f < t.

Suppose that the condition of the theorem holds. Given ¢ > 0,
b

b
choose s < f € t so that J t - J s < €. It follows that
a

a
I - I < e. Because this latter inequality holds fér every
positive €, it must be'true that I = I. Hence f is
integrable.

Conversely, suppose f is integrable. Given ba > 0,

choose a step function s with s < £, such that J s 1is
. a

within €/2 of I. This we can do because I 1is the supremum

b
of the set of such numbers f s. Similarly choose t > f so
a .



b
that J t 1is within €/2 of I. Now because f 1is
a .
_ b b
integrable, I = I. Therefore, j t and j s are within
a a

¢ of each other.U]

We now obtain a slight strengthening of the preceding
theorem:

Theorem 2. Suppose £ is defined on [a,b]. Let

A be a number. Suppose that given € > 0, there exist

step functions s and t with s < £ < t, such that

b b
J t - j s < g, and

b
Then J £f exists and equals A.
a b
Proof. We know that J f exists, by the preceding
a -
theorem. Given € > 0, choose s and t satisfying the

hypotheses of the corollary. Then we have

b b
by definition of the integral. Because [ t - J s <g, it

follows that



b
a - j f| < €.
a

Since the latter inequality holds for every € > 0, we must

' b
have A = j £.0
a

The calculation of J xP.

Let p be a positive integer. We seek to show that the
function f£(x) = xP is integrable, and to obtain a formula for
it, uéing the definition of the integral. The proof proceeds by

applying the Riemann condition. It involves some hard work, as

we shall see.

We need the following lemma, which is easily proved by

induction. (See the Exercises of Section A.)

Lemma 3. Let a and a + h be positive real numbers.

If m is a positive integer, we have

(a+h)™ > a™ + ma™ tn.



Now we prove our desired integration formula. First we

consider a special case:

Theorem 4. Let b be a positive real number. Then

tb p+1l
P = b
J xt dx 7L °

Proof. The theorem is proved by applying the Riemann
condition, as expressed in Theorem 2 preceding. We show that

given € > 0, there are step functions s and t such that
(i) s < f <t on [0,b]l,

b b
(ii) I t - f s < g, and
0 0

b
(iii) I

b
s < bPM/(p+1) < I t.
o 0

This will prove our result.
Let f(x) = xP. To define s and t, we begin by
partitioning [0,b] into n equal intervals. That is, we

consider the partition
xy = 0, Xy = b/n,...,xk = kb/n,...,xn = nb/n = b.
It is not obvious how n should be chosen. In fact, given

€ > 0, we shall choose n > bp+l/e; we will see later that this

is the "right" choice.



Now f(x) is strictly increasing on [0,b}; that is,

if 0 < Xy < Xy then f(xl) < £(x,). (This result is easily
proved by induction on p.) Hence it is easy to define s and

t. We let

s (x) f(xk_l) for X1 < x < Xy and

t (%)

Il

f(xk) for X 1 < x < Xp o

Then s < £ < t on the interval (xk_l,xk).

,gf-f(X)

/(0 x‘ Ay x/%-l XQ ter 'XM

‘These equations define s and t except at the partiﬁion
points. It doesn't matter how we define them at the partition
points, so long as s < £ < t holds. .Suppose we let s(x) =0
.and t(x) = bP at the partition points. Then s < £ € t on
the entire interval [0,b]. Thus (i) holds.

Let us compute fg t - fg s and show (i) holds. Now

the value of s(x) on (x_;,%) is given by

s, = £(x,_) = (x,_1)P = ((k-1)b/n)F.



Similarly, the value of t(x) on this same interval is

t, = f(x

. = (x)F = (kb/m)P.

k)

Furthermore, Xp = Xp_p = b/n. We compute

Jb En
s = s, ¢ (x, -x%,_ ;)
0 -1 K k “k-1

n

=] * (b/n)

s
k=1 %
_ P bip , [(2b|p e (n-1)b b
oo B e - (el
Similarly,

b n
J t =) t, * (b/n)
0 =1

[+ (e« e+ (0

Subtracting these equations, we obtain .

foe- oo BRI -

Since we (clevetly!) chose n so that n > bp+1/é, it follows

that, as desired.



To check (iii) requires some work. Plugging the

preceding computations into the desired inequalities

b b
J s < bPT/(p+1) < f t,
0

we obtain the inequalities

P+l [0P+1P42P+e et (n-1)P) _ b1 pe1 [1P42P4. . 4nP)

p+l p+l LPtHl .

n
Simplifying further, we have

' p+l
(*) op + 1p + see + (n--l)p < E_jT < lp + 2p 4+ oo + np.

pt
These are the inequalities we must prove.

We proceed by induction on n, holding p fixed. Both
inequalities are trivial when n = 1. We assume them true for
n, and verify their correctness for n + 1.

Let us begin with the left inequality in (*). We add nP
to ‘both sides to obtain

' p+1
P p e 1\ P p n p
0 + 1 + + (n-1) + n*¥ < TN + n*~.

If we can show that

+
nP*t | p o (n+nPHL
p+l p+l !

we are through; for the left inequality in (*) then holds for

n + 1 and the induction step is verified. But this latter



inequality follows at once from Lemma 3. If we set a = n

and h =1 and m = p+l, this lemma takes the form
(n+1)P¥L > nP*L 4 (pe1ynP,

which (if we divide through by p+l) 1is exactly what we want.
Now we consider the right inequélity in (*). Adding

(n+l)p to both sides, we obtain the inequality

np+l

ot (m+1)P < 1P 4+ 2P + oo 4 0P 4 (ne1)P,

If we can show that

(n+l)p+1 < np+1
p+l p+l

+ (n+1)p,

then we are through; the right inequality of (*) then holds
for n + 1, and the induction step is verified. Once again,
we use Lemma 3. If we set a =n+l and h = -1 and m = p+l

in that lemma, we obtain
Pl > (n+1)PTL 4 (pe1) (n+1)P(-1),
which gives our desired inequality. O

Using the basic properties of the integral (proved in D

of these notes), we now derive the general integration formula

for xp.



Theorem 5. Let p be a positive integer. Then for all

a and b,

b p+l p+l
o) _ b - a

Proof. Step 1. We first verify that the given formula

holds when a = 0. That is, we show that for all b,

b _
f %P dax = bP*/(p+1).
0

The case b > 0 was proved in Theorem 4. The case b =0 is
trivial. Consider the case b < 0; 1let b = -¢, where ¢ > 0.

Applying basic properties of the integral, we compute

c 0
f xP ax = f (-x)P ax by the reflection property,
-c

0 .
J (-l)pxp dx by laws of exponents,
b .

0 .
(-1)P I xP dx by the linearity property,
b

b
(-l)p+l J xP dx by our convention.
0

On the other hand, Theorem 4 implies that

c
J xP dx = cp+1/(p+l) = (-b)p+l/(P+l)
0

(-1)PH1pP*L /(oi1y .

Comparing -these two computations gives us our desired formula.



Step 2. The theorem now follows. We have

b ¢ 0 b
J xP ax = xP ax + f %P dx by the additivity property,
a ‘a 0
rb p a
= x5 dx - J <P dax by our convention,
0 0
pPtl P+l .
= BFL o1 by Step 1 of this proof. O

NOTE: Let us introduce the notation

b
£ (x)
a

f(b) - f(a).

With this notation, the preceding theorem can be written in the

form
b p+l, b
p = X
dex-grr-
a a,

NOTE: The preceding theorem, along with the linearity
property of the integral, now enables us to compute the integral
of any polynomial function. We simply "integrate term-by-term.”

For example, one has the following computation:



(x3-3x+5) dx

[N

+ 5 =

17
4 .
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Properties of integrals

In this section, we prove the four basic properties of the integral

that we shall need.

Theorem. (Properties of the ihtegral)

(1) (Linearity property.) If f and g are integrable

on [a,b], then so is c¢f + dg (here c and d are constants),

and furthermore

b b b
f (cf+dg) = ¢ J £+ d j g.
a

(2) (Additivity property.) Suppose f is defined on

[a,c] and a < p<c. Then

the two integrals on the right exist if and only if the integral

on the left exists.

——

(3) (Comparison property.) If f(x) < g(x) for all x

in f[a,b], then

b b
L f < L. g,

provided both integrals exist.

(4) (Reflection property.) If f£ is integrable on

[a,b], then f(-x) is integrable on ({-b,-a], and

-a b
J f(-x) dx = j f({x) dx.
-b a .
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We use the first three of these properties repeatedly.

» k3 Ed k3 b
Property (4) is used only in deriving the formula for f xP dax.
a
Let us note that once we make the convention that
a a b
J £=0 and that L) £f=- J f if a<b,
a : a

then the formula

c b c
I f = I £ + J £
a a b

holds without regard to the requirement that a < b < c. The

proof is left as an exercise.

Proof. First, one verifies these properties for step functions.
This is quite straightforward. Property (3) has already been proved; proper-
ties (1) and (2) will be assigned as exercisessand property (4) is proved as

follows:

Let s be a step functiom on [a,b] relative to the
partition XyrooerXpe Let s(x) = Sy for x in (xk-l'xk)'

The function

u(x) = s(-x)

is then a step function relative to the partition
-xk,...,—xl,—xo of the interval [-b,-al. Indeed, if x is
in the interval (-xk,-xk_l), then -x is in the interval

(Xk—l'xk)’ so that
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Then by definition,

But

[o o ]
s(x) dx = Sy ¢ (X =%, _.);
X | i=1 k k “k-1
and these two expressions are equal. Thus (4) holds for step

functions.

Step 2. We first prove property (1) in the case where ¢ and d
are non-negative. Suppose that f and g are integrable on [a,b]. Choose

step functions 84 and ti such that

slifﬁtl and szsgstz
and
b b £ : b . b £
t, - f s, < and j t, - J S, < e,
Ja ool 2(c+1) h 2, T2 2(a+1)

Then let s = Csy + ds2 and let t = ct, + dtz. New s and t are step

functions, and (since ¢ and d are non-negative)

s cf+dg £ t.

S~

Furthermore, by property (1) for step functions,



b b b b b b
S £ - ji s = [c Y tl + qj t2 ] - 0 c\g s; * d s, ]
a a a a a a
b b b b
= ¢ [j‘ £, - J‘ s, ] + 4/ j t, - g s, ]
a 1 a 1 a 2 a 2
ce dg < £
S st T Tany Szt

Hence the integral of cf + dg exists by the Riemann condition.

New, by definition of the integral, we have

We multiply the first set of inequalities by ¢, and the second by d, and

add, obtaining the inequalities:

b b fb b b
g s = C.I s, * dj s, €|c S f+4d gls c bt d.[ t, = g, t.
a a a a

a a

Here we use property (1) for step functions again. Since the expression in
the box lies between the integrals of s and t, by the Riemann condition

it must equal the integral of cf + dg .

Step 3. To complete the proof of property (1), it suffices to show

that
o

b
g'(—f) = -g £.
a a
This is easy. Given ¢£>0, choose step functions s and t

such that s &< f <t on {[a,b], and

~
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b b
f t - I s < g
a

Then -s and -t are step funttions on [a,b], and -t < -f£ -s on [a,Db].
Furthermore,

[f:-sl-{fb-t ] -f:s+f:t<z.
a

Here we use property (1) for step functions. Thus the integral of -f exists,

[t}

by the Riemann condition.

Now by definitionof the integral
b b b

J s < I £ < f t.
a a a

Multiplying these inequalities by -1, we conclude that

b b b b b
fa(—t) =—fat < -faf < -f s =§ (-s) .

a a

Here we use property (1) for step functions, again. Since the expression in
the box lies between the integrals of -t and ~S , by the Riemann condition

it must equal the integral of -f.

Step 4. Now we prove property (2). We consider first the "existence"

part of the statement. Suppose the integrals
' b . c
f £ and .( f
a b

exist. Choose step functions s and t

) 1 1= -
and choose step funclions S; and t, with s, < fg t, on [b,c], such

with s, < f < tl on f[a,b],

that



D&

b b c c

j tl - J sy < e/2 and L t2 - I S, < e/2.
a a b

The values of these functions at the partition points do not

matter, so we can assume that tl' and t, are equal at c,

and S and s, are equal at c. Then ¢, and t,y combine

to define a step function t such that £< t on [a,c], and

51

s< f on [a,c]. Furthermore, using property (2) for step functions,

and S, combine to form a step function s such that

Pt
o
i
P ma—
0
@
1]
pr———

]
——

Jab gy + j: e,] - U: sy + Lc s2)

<by ‘the way s and t were constructed)

< E L E
zt 2
c
Hence J " f exists , by the Riemann condition.
a c
Conversely, suppose j f exists. Then given ¢ > 0,
a

we can choose step functions s and t with s < £f<t on

[a,c], such that



Let s, and t; Dbe the restrictions of s and t,
respectively, to [a,b], and let s, and t, be their res-

trictions to [b,c]. As before, ‘using property (2) for step fucntions,

we have
{jb c b c
t, + t} - U s +[ s]<s
a 1 L 2 a 1 b 2 ’
or
Ub_ b ‘ c c
t, - s} + (L t —f s}<€.
N 1 a 1 2 b 2

Since each expression in parentheses is nonnegative, each is
b Cc
f and [ f exist.
‘b

Now in either of these cases, we have

less than €. Hence J
: a

by definition. Adding, we obtain

P . c c . :
Since the expression in the box lies between S 2 S and fa t, the Riemann

condition implies that it equals f: £ .

Step 5. We prove the comparison property (3).
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Consider the set of all step functions s such that
s < f on [a,b]; also consider the set of éll step functions
't such that g< t on [a,bl. Because f < g on [a,bl, we

conclude that s €t on [a,b], whence

because (3) holds for step functions. Holding t fixed and

letting s vary, we conclude that

‘That is,

I(f) < I(g).

Il
ey
o
rh

Since both f and g are integrable, we have I(f)

b
and I(g) = I g, so our result is proved.
a

Step 6. Finally, we prove the reflection property (4).



Given € > 0, choose step functions s and t so

. b b
that s <'f <t on [a,b] and f t - f s < €. Then s(-x)
a a

and t(-x) are step functions on (-b,-al, and
s(=x) < f(~-x) < t(-x)

on [-b,-al. Now

-a -a b b
j t(-x) - f s(-x) = J t - f s < g;
-b ~b

here we use the fact that (4) holds for step functions. Thus

-a
f £ (-x)
-b

exists., by the Riémann’condition. Using (4) for step functions again,

b -a -a -a b
I s - L s{~x) < L. £f{-x)|< J t{-x) = f t .
a2 b b ~-b 2

Since the expression in the box lies between the integrals of s and ¢, it

must by the Riemann condition equal the integral of Ff.
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Exercises

1. Prove property (1) for step functions. {Hint: If s and t are
step functions, the first thing to do is to choose a partition P that is compatible
with both s and t. Then show cs + dt is a step function compatible with

P.]

2. Prove property (2} for step functions. [Hint: If

P is a partition of fa,p] and P2 is a partition of [b.cl»

1
then Pl v P, is a partition of fa,cl.]
3. we know (2) holds if a < b < c. Show that with our

convention, it holds in all cases:

a = b, a <c<b, ¢ <a<hb,
a=c¢, b<a<e, c < b < a.
b = ¢, b <c¢ < a,

4  Let x0 < -+-<x_ bea partition of [a,b]. Let s be astep function on [a,b] such
that s(x) =s, for x,_; <x<x. Let h be an increasing function on [a,b]. Suppose

we define

E sh=] g ()bl )

(a) Show that this integral is well-defined.

(b) Show that this integral satisfies the linearity, additivity, and comparison
properties. You need to use the fact that h is increasing in order to prove one of these
properties; which one? '

| [This definition is actually an important one in mathematics. It leads to a
generalization of the integral called the Riemann—Stieltjes integral; one defines [ f dh

by using upper and lower integrals, just as before. This integral is important in
probability theory.]



AN

\\i;ii//)lntegrability of bounded piecewise-monotonic functions.

The definition of "piecewise-monotonic" is given on p.

77 of the text.

Lemma. If f is bounded on [a,b] and monotonic on

(a,b), then f is integrable on [a,b].

(Note that we need to assume f 1is bounded in the hypo-

thesis of this lemma. The function

f(x) =

is monotonic on (0,1l), but it is not bounded.)

Proof. Choose M so that -M < £(x) < M. We apply the
Riemann condition.

Given € > 0, 1let us choose numbers ¢ and d (close

to a and b respectively), such that

a<e<d<hb

and such that ¢ - a<¢/M and b - 4d < g/M.



M =~ 0 —
a ¢
—t
St
[ 4
-—M o O] Commee—=20D
Now £ 1is monotonic on [¢,d] so it is

Therefore we can find step functions s

integrable on [c,d].

and t defined on

[c,d] such that s < £f <t on [c,d], and such that
fg t - fg s <'e. Extend t to a step function ty defined
on [a,b] by setting
M for a<x <ogc,
tl(x) = +(x) for c < x<d,
M for d < x <b.

Similarly, extend . s to a step function

by setting

S defined on [a,bl]

1



-M for asx<eg,
sl(x) = t (x) for c < x <d,
-M for d < x € b.
Then S < f < tl on all of [a,b]. Furthermore,
Jb b c d b
t-js=f(t-5)+f(t-S)+J(t-S)
a 1 a 1 a 171 1 71 d 171
d
= 2M(c=-a) + j (tl-sl) + 2M(d-b)
c

< 2¢ + £ + 2e = 5e.

Since € 1s arbitrary, the Riemann condition is satisfied. U

Theorem. If f is bounded and piecewise-monotonic on

[a,b], then f 1is integrable on [a,b].

Proof. By hypothesis, there is a partition
X, < Xy < .0 < X of [a,b] such that £ 1is monotonic on
each open intervai (xi_l,xi). By the preceding lemma, f
is integrable on [xi_l,xi] for each i. By the additivity

_property of integrals (Theorem on p. D,1) , it

follows that £ is integrable on [a,bl.[d

Exercise

1. Suppose f 1is bounded on [a,b]l. Suppose also that £
is integrable on every closed interval [c;d] contained
in the open interval (a,b). Show that £ is integrable

on [a,bl.



Continuity of the square root function.

The following‘theorem shows that the square-root
function is continuous for x > 0. We will give a different
proof, based on the intermediate-value theorem, shortly.

Theorem. (i) 1lim /x = 0.

x>0+

(ii) If a > 0, 1lim vx = /a.

X+a
Proof. (1) Given ¢ > 0, we wish to ensure that
|/x~0| < e. This will occur if x < e2. So the choice

§ = ¢% will work; if 0 < x <,ez, then Vx < €.

(ii) Given € > 0, we wish to ensure that

[vx - /a| < e.

But

|/% - va| = 1xmal o [x-a
/X+/a = /a

So we need merely choose & = eva; if |x-a| < eYa, then

| /x~val < . [J



Exercises on continuity

1. Show directly from the definition that f(x) = 1/x is continuous at x = 3.
(That is, given € > 0, definea §> 0 and show it will work.)

2, Let f(x) be defined for all x, and continuous except for x = —1 and x = 3.
Let '

x2 + 1 for x>0,

g(x) =
x-3 for x<0O.

For what values of x can you be sure that f(g(x)) is continuous? Explain.



Rational exponents - an application of the intermediate-value

theorem.

It is a consequence of the intermediate-value theorem, that,
given a positive integer n and a real number a 2 0, there is

exactly one real number b > 0 such that

We denote b by P&, and call it the atl root of a. (See

Theorem 3.9, p. 145 of Apostol.)
It follows from the general theorem about continuity of

inverses that the nEE root function, defined by the rule
f(x) = 8% for x ) 0,

is continuous. (See Theorem 3.10, p. 147 of Apostol.f

Now (finally!) we can introduce rational exponents. We do
so only when the base is a positive real number.

Definition. Let r be a rational nunber} let a be a
positjve real number. We can write r = m/n, where =a and n

are integers and n is positive. We then define

a® = (D"



(Here we use the fact that DIE is non-zero, so m can be
negative.)

We must show that this definition makes sense. A problem
might arise from the fact that the number r can be represented
as a ratio of integers in many different ways. We must show that
the value of a’ does not depend on how we represent r. This
is the substance of the following lemma.

Lemma 1. Suppose m/n = p/q, where m, n, p, qQ are
integers, and n and q are go;itive. Then (nfi)m = (qIE)P.

Proof. Let c = °J&@ and d = 9J8. Then a = c® and a =
dq_ by definition. Because m/n = p/q, we have né = np. Using
these facts, we compute N

aP = (cn)p = PP = M1 = (cm)q, and

aP = (4P = 4P = (d?)?,  so that

(c®? = (a1,

(We use here the laws of integral exponents.) We conclude (by

uniqueness of the qEE roots) that

cn = dp, or

EEm® = (P o



On the basis of Lemma 1, we know that al is well-defined
if r is & rational number and a is positive. In particular,

we have the equation

aI/n = nfi.
by definition. The definition of a'/n can then be written in
the form
an/n - (al/n)n.

Consider now the three basic laws of exponents. We already
know that these laws hold in the following cases:
(i) positive integral exponents; arbitrary bases,
(ii) integral exponents; non-zero bases.
We now comment that these laws also hold in the following case:

(iii) rational exponents; positive bases.

The proof is not difficult, but it is tedious. It is given in
Theorem 2 following.

Later on, we shall extend our definition to arbitrary real
exponents; that is, we shall define a* when x is an arbitrary
real number (and a is a positive real number). Furthermore, we
shall verify that the laws of exponents also holds in this new

situation; i.e., in the case:



(iv) real exponents; positive bases.
So you can skip the proof of Theorem 2 if you wish, for we are
going to prove the.more general result involving real exponents
later on.
Before proving Theorem 2, we make the following remark about
negative bases: If a is negative, one can still define nIE
provided n is odd. For in that case there exists exactly one

real number b such that b® = a. We shall define nIE = b in

this case. It is tempting to use exponent notation in this
situation, defining a®/0 - ("f@)® if n is odd and a is
negative. However, this practice is dangerous! For the laws of

exponents do not always hold in these circumstances. For
example, if we used this definition, we would have
(-8)2)Y/8 = 2, while (-8)!/3 = -2,

Thus the second law of exponents would not hold in this

situation. For this reason, we make the following convention:

We shall use rational exponent notation only when the base

is positive.

Now we verify the laws of exponents for rational exponents

and positive bases.

Theorem 2. If r and s are rational nusbers, and if a

and b are positive real numbers, then

(i) aTa® = a"7%,



. Let ¢

(ii) (af® = a’5,
(iii)  a'B’ = (ab)F.
Proof. Let r = m/n and s = p/q9, where m, n, P,
integers, and where n and q are positive.
To prove (i), we note that

afa® - am/n ap/q

- a®9/na  np/nq

("Ym)RY ("9g)nP by definition,

= (BE)RIBP o (iii) for integral exponents,
= a(BIOPI/DD o e inition,
= ar+s.

To prove (ii), we verify first that

P = ofLn,

/a; then o = a by definition. We compute

) | = (én)l = cnn = (cl)n

a

q

G.5

are



by (ii) for integral exponents. By uniqueness of niE roots, we

have

as desired.
It now follows that

m/n _ (alln)n -

(%) a?/? = myl/n

(a

The first equation follows from the definition of am/n. and the

second from what we just proved. The formula (*¥) is of course - ~
special case of our desired formula (ii).

Now we prove (ii) in general: Let

c = (ah)® = (am/n)p/q.

Then

((a®1/PyPy1/9 4y (%) (applied twice)

(1]
]

(((a®PH/ B/ hy (x).

It follows that



Then

that

el = (((am)p)l/n, and

(cH? = (a™P, by definition, so that

it = a™P by (ii) for integral
exponents.

c = 90 a™? by definition,
= (anp)llnq by definition,
= oP/D04 by (%),

rs
= a .

To check (iii), let ¢ °ra 'and 4 = B[F. We first note

g

(cd)®

by (iii) for integral

exponents,

ab by definition.



It follows that

cd = nJaE.

We then prove (iii) as follows:

aB/0pB/ o (BB o PR by definition,

(cd)' by (iii) for integral exponents,

]

(*[a5)™ by (%),

(ab)‘/n by definition.

Thus the three laws hold for rational exponents. o

"



The small span theorem and the extreme~value theorem.

There are three fundamental theorems concerning a function
that is continuous on a closed interval [a,bl]. The first

is the Intermediate-Value Theorem, which is stated and proved

on p. 144 of Apostol. We consider the other two here.
We begin with a definition.

Definition. If the function f 1is bounded on the

interval [c,d], we define the span of f on this interval

as follows: Let

M(£) = sup L£(x); xe[c,al} ,

m(f)

inf Xf(x);:<@[c,d]} .
"
Then we define the span of f by the equation

span (f) = M(f) - m(£f).

Theorem. (The small-span theorem). Let £ be continuous
on the closed interval [a,b]. Given ¢ >0, there is a
partition
Xg < Xy < .. < X,
of the interval [a,b] such that f is bounded on each closed
subinterval [xi—l’xi]’ and such that the span of

f on each closed subinterval is at most €.

Proof. The proof of this theorem is a bit tricky, but the
theorem is so useful that the effort is justified.

One proceeds by what is sometimes called "the method



of successive bisections," or less elegantly, "chopping
~ the interval in half repeatedly"!
For purposes of this proof, let us make up some terminology.

If £ 1is defined on the interval [c,d], we shall say that

f 1is € -pleasant on the interval [c,d]

if there is some partition of [c,d] such that the span
of £ on each closed subinterval of the partition is at
most €. If there is no such partition, we shall say that

f is ¢ -unpleasant on [c,d]!

 Our object then is to prove that if £ 1is continuous
on [a,b], then f 1is €-pleasant on [a,b].

We make the following remark: Let ¢ be any number
with a<c<b. If f is ¢-pleasant on [a,c], and if
f is also g-pleasant on {c,b], then £f 1is g-pleasant
on all of f[a,b]. The proof is easy. One merely takes
the appropriate partitions of [a,c] and [c,b] and puts
them together to get a partition of {a,b]. This simple

fact is all we need.

/-__4;‘_/\/"“‘"’\7'_____—\
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We now prove the theorem. Assume that £ 1s continuous
on [a,b], and that f 1is €-unpleasant on [a,b]. We
shall derive a contradiction.

First step. Let ¢ be the midpoint of [a,bl. Since

f 1is g-unpleasant on f[a,b], it must be true that ¢

is € -unpleasant on either [a,c], or on [c,b], or on



both. . Let [al,bl] denote the left half [a,c] Aof our
interval if f 1is € -unpleasant on [a,c]. Otherwise,

let [al’bl] denoté the right half [c,b] of our interval.
In either case, f is .E—unpleasant on [al,bl].

General step. Assume that [an,bn] is an interval

contained in [a,b] and that f 1is € -unpleasant on [an,bn].

Let ¢ be the midpoint of [an,bn]. As before, let

[an+1’bn+1] denote the left half [an,cn} of [an,bn]
if £ 1is €-unpleasant on this half; otherwise, let

] denote the right half. 1In either case, f
1.

We now have defined a sequence of intervals

[an+l’bn+l

istunpleasant on [an+1'bn+l

[allbl]r [azlbz],...

that is "nested" in the sense that each interval contains
all its successors. Furthermore, each interval has half
‘the length of the preceding bne, and f is € -unpleasant
on each of them. It follows by an easy induction proof

that the length of the nth interval is

bn -a, = (b—a)/Zn.

Because the intervals are nested, we have

<
- 2

Let s be the least upper bound of the numbers a, - Since
all the numbers ai belong to the interval [a,b], sO
does s. Now we derive a contradiction. We have three

cases, according as a<s<b, or s = a, or s = b.



Consider first the case where a<s<b. Since f

is continuous at s, we may choose a neighborhood (s-J, s+9)

of s such that

I£(x) - £(s)| < £/2

for all x in this neighborhood of s.

i - - e em ee o e -

€4 0-[—'(5) '
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Because s 1is the least upper bound of the numbers

ai, there must be an n such that

s —§< anS. s.

Because the a;, are increasing, we have

— < < < e .
s S an~an+l\an+2 € s

Now let us choose m so large that m >» n, and so
that

(b - a)/2™ < J.
Then b - a <J., so that b < a +;_ < S+§. Then
m m » m m

the interval [am,bm] is contained in the interval (s —J: s +§).
Therefore the span of £ 1in the interval [am,bm] is at

most ©.



It follows that f£ is € -pleasant on [am,bm], Indeed,
 for any partition of [am,bm], the span of f in each subinterval
of the partition will be at most £.
The other two cases proceed similarly. For example,
suppose s = a. In this case, we have a, = a for all
n. (This means merely that we chose the left half of the

interval at each step of the construction.) Since f is

continuous at a, there must be a d such that
[£(x) - £(a)|<€/2

for a<x<a +d . Choose m so large that (b-a)/20<d.
Then b _ - a_< J: so that b_< a_+d=a +d. Then the

m m m m
interval [am,bm] is contained in the interval f[a, a +<;))
so the span of f 1in the interval [am,bm] is at most £.

It follows that f 1is g£-pleasant in [am,bm], as before.

The proof when s = b is similar. O

Here is an important application of this theorem:

Theorem. If f is continuous on [a,b], then £

is bounded on [a,b] and integrable on [a,b].

Proof. Given £>0, choose a partition

< < ... <
Xq Xy X,

of [a,b] such that the span of f on each closed subinterval

of the partition is at most €. Define

0]
I

3 < x¥< X
K inf zf(x) for SR L ¢

23
H

sup {f(x) for Xxp_1 & Xixk‘k-



Now f is bounded on [a,b]; 1indeed, f(x) 1is at most

the largest of the numbers tl""'tn and at least the smallest

cf the numbers SyreeerS,.
We define step functions s and t Dby letting their

values equal Sy and t,. respectively, on (xk_l,xk);

at the partiticn points, we set s(xk) = t(xk) = f(xk).

Then s(x)< f(x) € t(x) for all x. Now te - s S b2

because the span of f on [xk_l,xk} is at most &€ . Therefore

O R )

The Riemann condition applies to show that £ 1is integrable

on [a,bl. 0

Finally, we prove the third big theorem about continuous

functions.

Theorem. (Extreme-value theorem). Let £ be continuous
on the closed interval [a,b]. Then there are points X
and X4 of [a,b] such that for every x in [a,b],
we have .

f(xy) € £(x) £ £(x;).

The number M = f(xl) is called the maximum~value

of £ on [a,bl, and the number m = f(xo) is called

the minimum-value of f(x) on f{a,b]. Both are called

extreme valuesof f on [a,bl].




Proof. We show that the point X, exists; the proof

that exists is similar.

*0
We know that f 1is bounded on {a,b], by the previous

theorem; define
M = sup if(x) for x in [a,b]} .

We wish to show that M = f(xl) for scme point X, of
[a,b]. Suppose this is not true. We derive a contradiction.
Then by assumption, we have f(x)< M for all x in

{a,b]. Consider the function

S S
g(x) - M - f(X) .

Since the denominator does not vanish, g is well-defined;

because f 1is continuous, so is g. Therefore g 1is bounded

on [a,b], by the preceding theorem. Choose C so that

g{x)< € for x 1in [a,b]. Then

1

0< wTEm =

C,

so that 1/C €M - f(x), or f(x)< M- 1/C, for every
x in [a,b]. This contradicts the fact that M 1is the

least upper bound of the values of f£f(x) on [a,bl. O

We shall use the extreme—vaiue theorem shortly, wheh

we prove the fundamental theorems of calculus.
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Exercises on the intermediate-value, extreme-value, and small-
span theorems.

1.

Let f(x) = x + [x] for 0 < x < 3.
(a) Draw the graph of f; show f is strictly increasing.
(b) Define a function g by the following rule:
'If y = £(x) for some x in [0,3], 1let gl(y) -equal
that x. Because f is strictly increasing, g is
well-defined. What is the domain of g?
Let f(x) = x4 + 2x2 + 1 for 0 < x < 10.
(a) Show £ 1is strictly increasing; what is the domain of
its inverse function g?
(b) Find an expression for g, using radicéls.
("Radicals" are the symbols v/, 3/, %/, etc.)
Let f(x) = 2% - 5x% + 5 for «x 3'2. We will show later
that £ is strictly increasing (since its derivative is
positive for x > 2).
(a) Show that £ 1is unbounded.
(Hint: f£(x) > x (2x=5) > 2x - 5.)
(b) What is the domain of its inverse function g?

[Note: A famous theorem of Modern Algebra states that it

is not possible to express g in terms of algebraic

operations and radicals.]

Let £(x) be defined and continuous and strictly increaéing

for x > 0; suppose that f(Oj = a.

(a) Show that if f is unbounded, then £ takes on every
value greater than a.

(b) If £ is bounded, let M be the least upper bound of
the values of £f. Show that f takes on every value

between a and M, but does not take on the value M.
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Show by example that the conclusion of the intermediate
value theorem can fail if £ is only continuous on [a,b)
and bounded on [a,b].

Show by example that the conélusion of the extreme value
theorem can fail if £ 1is only continuous on [a,b) and
bounded on [a,b].

Let f(x) =x for 0 < x < 1l; let £(1) = 5. Show that

the conclusion of the small span theorem fails for the

"function £f(x).

A function f defined on [a,b] is said to be piecewise-

continuous if it is continuous except at fimitely many

pcints of [a,b)}. Said differently, £ 1is piecewise-
continuous if there is some partition of [a,b] such

that f 1s continuous on each open subinterval determined
by the partition.

(a) Show that if» f 1is bounded on ([a,b] and piecewise-
continuous on {[a,b], then  f 1is integrable on [a,b].
[Hint: Examine the pfoof ve gave for piecewise-monotonic
functions.]

(b) Show that f can be piecewise-continuous on
[a,b] without being bounded on [a,b].

Consider the function

-0)l7xl e xS0,
f(x) =

Show that f 1is integrable on [0,1]}]. Show that £
is neither piecewise-monotonic nor piecewise-continuous

on {Oll].



10.

Challenge exercise. Define a function f on the

{0,1] by setting f(x) = 0 1if x 1is irrational
and f(x) = 1/n 1f x is a rational number of the
x = m/n, where m and n are positive integers
common factors other than 1 ; and f(0) = 1

(a) Show that £ 1is integrable on [0,1].

interval
H
form

having no

(b) Show that f 1is continuous at each irrational

and discontinuous at each rational.
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Theorem. Let m and n be integers; let n> 0. Let

nly) = (9™ for y>o.

Then h 1is differentiable, and

n(y) = 2 &phyt.

n

Proof. Step 1. We first prove the theorem in the case m = 1.

let f£(x) = x' for x> 0. Then the inverse function to £, denoted

g(y), is the nth root function. By the theorem on the derivative of

an inverse function, g'(y) exists and

g'(Y) = f'(X) ’
where x = g(y). Now f'(x) = nxn-1 . Therefore

1 _ 1

- )
n &t n(AM"

g'(y)

1 n

- XY
a&H" &t ny
1n -1
ATy

Step 2. We prove the theorem in general. If m = 0, it is trivial.

Otherwise, we apply the chain rule. We have

ny) = (9™ ;

then

nYH™ LAYy

FHT.yl O

h'(y)

!
aig



I.2

Orce one has checked that the laws of exponents hold for rational
exponents (Notes G), one can write this formula in a manner that is

much easier to remember:

r

Theorem. Let r be a rational constant; let h(x) = x

for x > 0. Then h is differentiable and

h'(x) = rx .

We will give a different proof of this theorem later on, one which

holds when r 1is an arbitrary real constant.



Exercises on derivatives

1. Define a new derivative by the formula

3 3
D#f(x) = lim (£(x+h)) h- (£(x)) .
h-+0
Assuming that £ and g are continuous, and that D#f(x)
and D#g(x) exist, derive formulas for D#(f(x)g(x)) and

D#(l/f(x)) in terms of D#f(x) and D#g(x).

2. Define a new derivative by the formula

DYf(x) = 1im 2xFh) = £(x)

h0 h?
2 * .
If f(x) = x" + 3, show that D f(x) exists only at the
*
point x = 0, and compute D £(0).

3. Assume the usual properties of the sine and cosine functions.

Define
i x sin(l/x) for x # 0,
f(x) =
0 . for x = 0.
x2 sin(1/x) for x # 0,
g(x) =
0 ’ for x = 0.

(a) Apply the definition of derivative to defermine whether
£'(0) and g'(0) exist. Compute them if they do exist.
(b) Show that £f'(x) and g'(x) are not continuous at
X = 0. Explain which part of the definition of

continuity is violated in each case.



4, If f(x) = u(v(x)% write down a formula for £"(x),

assumin u', u", v', and v" exist at the points in
g p

question.
5. Suppose f{(x) 1is continuous and strictly monotonic on
the interval [a,b]; let g(y) be its inverse func-

tion. Show that if £' and f£f" exist on [a,bl,
then g" exists at each point y for which

£'(g(y)) # 0, and

g"(y) = - —Ela))
[(£' (g(¥y))]
6. Let f£(x) = 2x5 - 5x4 + 5 for x > 2; 1let g(y) be

the inverse function to f£. Let ¢ be the number for

which f(c) = 0. (See Exercise 3 of Section G.)

(a) Note that g(0) = c¢; show that g(-11]) = 2 and
g(86) = 3.

(b) Show that

g'(0) = L

10e3 (c-2)

(c) Compute g'(-1l) and g'(86).

7. Suppose f is a function defined for all x such that:
£(1) = 2 and £(2) = 3 and £(3) = 4;
£1(1) = 6 and £'(2) =10 and £'(3) = 7;
£" (1) = 3 and £"(2) = 2 and £"(3) = 1.

(a) Let h(x) = £(£(x)); compute h(l), h'(1), and
h*(1). (Answers: 3, 60, 102.)

(b) Suppose f is strictly increasing. Let gly) be
its inverse function, and compute g(3), g'(3),

and g"(3). (Answers: 2, 1/10, =-1/500.)



J.3

~~ ¥, Derive a formula for the derivative of Vx directly from the definition.

9.

Using the fact that f(x) = 3Vx is defined and continuous for all x, derive a formula
for f’'(x), when x = 0, directly from the definition of the derivative.

[Hint: a’- b’ = (a-b)(a>+ab+b?). Leta="Vxth and b="Vx.]



The fundamental theorems of calculus.

Here are the two basic theorems relating integrals and
derivatives. You should know the proofs of these theorems.
First, we need to discuss "one-sided” derivatives.

If a function 1is defined on an interval [a,b], we

know what it means for £f to be continuous on [a,b].

It means that £ 1is continuous in the ordinary sense at

each point of the open interval (a,b), and that f satisfies
the appropriate version of one;sided continuity at each

of the end points a and b. .

What shall it mean for f to be differentiable on

fa,b]? It will mean that f 1is differentiable in the
ordinary sense at each point of (a,b), and that the appropriate
one-sided derivatives of f exist at the end points. More
gspecifically, the one-sided derivative of £ . at a 1is

the one-sided limit

f{a+h) - f(a)
h - 0+ h

fr{a) = 1lim
Similarly , the one-sided derivative of £ at Db 1is the
one-sided 1limit

f{a+h) - f(a)
—» 0~ h *

£'(b) = 11mh

Of course, if it happens that f 1is defined and differentiable
in some open interval that contains [a,b], then it is

automatically true that f 1is differentiable on f[a,b],



in the sense just defined. This is the situation that usually

occurs in practice.

Now we prove a lemma:

Lemma 1. Suppose f 1is integrable on the closed interval

having ¢ and d as end points and that |[f(x)| < M on this

interval. Then

a .
g[ £] < M|a - c].
C

Proof. Assume first that ¢ < d. Now

-M< £f(x) <M

for all x in [c,d]. The comparison theorem for integrals

talls us that
d
-M(d~c) < L f < M(d-c).

Oon the other hand, if 4 < ¢, the comparison theorem

tells us that
c
-M(c=-d) < L f < M(c-d).

d
In either case, we conclude that IL £f] <Mld-c|. O



Theorem 2. Suppose f is integrable on [a,b]. Let

be a point of [a,b]. Let

X
A(x) = [ f(t) dt
(o4

for x in [a,b]. Then A(x) is continuous on [a,b].
Proof. Throughout this proof, let h denote a number

such that h # 0 and xd +h is in [a,b]. This means that

j%*- —3 y h is small, and that h
0
X, Kotk E*Elf —3 is positive if Xg = a,
— —3 and h 1is negative if
X+ A C 7 5
x.f!. X, xO = Bb.

We know f 1is bounded on [a,b]; choose M so that

|£(x)| <M for x in [a,b]. Then we compute

_ xo+h X,
A(x,.+h) - A(x.) = [ £ - j £
0 0 c c
x0+h
- f £(x) dx.
X0

By the preceding lemma, we have
xo+h
|A(xg+h)-A(xg) | = |j £(x) dx| < M|n].
X
0
We use this inequality to show that A(x) is continuous at

Given € >0, let § = e/M. Then if |h| <'§, the above

inequality shows that



|A(xy+h) - A(xg) | < M|h| < M(e/M) = e. O

Theorem 3. (First fundamental theorem of calculus.)

Let f be integrable on [a,bl; let ¢ be a point of [a,b].

Let

X
A(x) = f f(t) dt.
c

If f is continuous at the point x, of [a,b]l, then At (x4)

e

exists and A'(xo) = f(xo).

Proof. Let h be as in the preceding proof. As before,
we compute

‘x0+h
A(x0+h) - A(XO) = [ f(t) dt.
%0

Now since f(xo) is a constant, we have the equation

x0+h

-f(x0)°h = I f(xo) dt.
*0

Subtracting and using linearity, we see that

Alxg*h) = A(xg) L Xgth
(*) h - f(xo) = ‘H [ (f(t)-f(xo))dt‘
h b4

0




Ul

K.

To prove that - A'(xo) exists and equals f(xo) is equivalent

to showing that

A(x0+h) - A(xo)
lim B = f(xo).
h->0
(The limit is a one-sided limit if X5 edquals a or b).

To prove this statement, it suffices to show that the right side

of (*) approaches zero.
We use the continuity of f at Xy Given ¢ > o,
choose § > 0 so that

[£(x) - f(xo)l < g

whenever ]x-xol <6 and x is in [a,b]. Then if 0 < [h| < s,

the inequality
[£(x) - f(xo)l <e

holds for all x in the interval having end points Xq and

Xg + h. It follows from the preceding lemma that
' o*h .
LL. (£(x) - f(XO))dx, < ¢|h].
0

We conclude that for 0 < |n] < g,

R - f(xo), < g,

as desired. O



Theorem 4. (Second fundamental theorem of calculus.)

Suppose P(x) 1is defined on [a,b] and that P'(x) exists

and is continuous on [a,bl. Let c be a point of [a,b].

Then for all x in [a.,b],

xX
J pr(t)dt = P(x) - P(c)-
(o

Proof. Since P'(x) is continuous on [a,bl, it is

integrable. Furthermore, if

A(x) P',

i
Q%

then by the first fundamental theorem, A' (x) exists and
equals P'(x). We conclude that the function P(x) - A(x)
is continuous on f[a,b] (in fact, differentiable on [a,b])
and that its derivative vanishes on [a,bj.

It follows from the mean-value theorem (see p. 187 of

the text) that P(x) - A(x) is constant on {fa,b]. Let

- P(x) - A(x) = K
fér all x iﬁ [a,b]. Setting X = ¢, we see that
P(c) - 0 = K.
Therefore,

A(x) = P(x) - K = P(x) - P(c),
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Definition. If f£(x) is a function defined on fa,b],

a primitive of f is a function P(x) defined on [a,b] such

that P'(x) = f£(x). (Such a function P does not always exist,

of course.) We also call P(x) an antiderivative of f, and we

write
] fi{x) dx = P(x) + cC.

The second fundamental theorem says that if f is
continuous, one can compute IZ f provided one can find a
primitive P of £; for then [P £=p(b) - p(a).

Remark. These two theorems may be summarized as

follows:
a (¥
(1) = j £ = £(x) if f 4is continuous at x.
c =13
*4a ap
(2) L: dx P = P(x) - P(c) if dx 1S continuous

on the interwval having end points ¢ and x.

These theorems say, in essence, that integration and differenti-
ation are inverse operations. But in each case, there is a

continuity requirement that the integrand must satisfy in order

for the theorem to hold.

Corollary 5. Let r be a rational constant with r # -1.

If a and b are positive real numbers, then

b r+l r+l
r . b - a
L X" dx = r+1 :
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. ;

Proof. Let P(x) = xF l/(r+l) for all x > 0. Then we

lhave shown (see notes I) that P'(x) = <t for all x > 0. Since
. r ' .

the function x 1s continuous for all x > 0, it is continuous

on [a,b], so the second fundamental theorem applies to give our

formula. - O

Exercises

1. If b > 0, show that

b
J {(t] @& = Y4[p] (20 - [b] -1).
o .
n b
[Hint: Let n = [b]. Evaluate J (t] dt and J (t] dt.]
0 n

X
2. Let A(x) = [ [t] dt.
0

(a) Use the first fundamental theorem of calculus to show
that A'(x) = [x] when x is not an integer, and that A'(x)

does not exist when x 1s an integer. See the figure on p. 127
of Apostol.
(b) Use the formula of Exercise 1 to verify the same

result.

3. Use the chain rule to evaluate:

2 2
@ 2 r‘ at__ o 4 [1 a - r‘ at__
dx 1 l+t5 ' dx x3’ 1+1:5 dx x3 1+t5

4. Suppose F(t) is continuous for a < t < b. Let

x .
A(x) = [ F(t) dt

a

for x in [a,bl.



(a) Suppose g(u) is a function whose values lie in

the interval [a,b], with g differentiable. Consider the
function
g (u)
B(u) = A(g(u)) = f F(t) dt.
a

Use the chain rule to show that

B'(u) = F(g(u))g' (u).

We express this fact in words as follows: The derivative of

g(u) :
j F(t) dt

a

with respect to u equals the integrand, evaluated at the upper

limit, times the derivative of the upper limit.

(b) If g(u) and h(u) are two functions whose values
lie in [a,b], and if g and h are differentiable, derive a

formula for the derivative with respect to u of

g(u)
f F(t) dt.

h (u)

[Hint: Write



[a,b]. Let

5. Suppose £ 1is integrable on
X
A(x) = J £(t) dt
- “‘a

for x in [a,b]. Let Xg be a

(a) If £ 1is continuous

the function A(x)?
is continuous

(b) I£f £

about A(x)?

If £ 1is continuous

(c)
can you say about A(x)? [Hint:
fundamental theorem.]
exists on

(d) If £

A(x)?

{a,b]

point of (a,b).

at Xy what can you say about

on [a,b], what can you say

from the right at x what

0’
Examine the proof of the first

what can you say about

Justify your answers, using the theorems we have proved.



The trigonometric functions.

For the present, we shall assume the following theorem
, concerning existence of the sine and cosine functions. Later
on, when we study power series, we shall prove this theorem.

Theorem 1. There exist two functions sin x and cos X,

defined for all real numbers X, satisfying the following condi-

(i) sin 0 = 0; cos 0 = 1.
(ii) D sin x = cos x; D cos x = -gin x.
From the properties listed(in this theorem, one can derive
all the other familiar properties of the trigonometric functioné,
as we shall see.

Theorem 2. Conditions (i) and (ii) specify the func-

tions sin x and cos x uniquely.

Proof. Step 1. We first note thé following fact:

If u(x) and v(x) are functions satisfying the equations
u'(x) = v(x) and v'(x)=-u(x) for all X, then u2 + v2
is constant. This result follows from the fact that the derivative of
u2 + v is 2m' + 2w' = 2uv - 2vu. = 0.
Step 2. We prove the theorem. Suppose Sin x and Cos x are two

other functions satisfying these conditions. Iet

u(x) =sinx - Sin x and Vv(xX) = cosx - Cos x .
Direct computation shows that u' =v and v' = -u. Then u2 + P = K
for same constant K. Substituting x =0, we see
that K = 0. It follows that sin x - Sin x = 0 for a1l x

and cos x - Cos x = 0 for all x. O



Theorem 3.

L.2

The functions sin x and cos x have

the following properties:

(a)
(b)

(c)
(d)

(e)

(£)

(g)

(h)

(1)

(3)

(k)

(2)
(m)

2 2

sin® x + cos® x = 1.

sin x and cos x are continuous for all x and

have values in the interval [-1,1].

/ sin x dx = -cos x + C; [ cos x dx =

sin x + C.

sin(x+y) = sin x cos y + cos x sin Y,
cos (x+y) =.cos x cos y - sin x sin y.

sin x cos x
2

sin 2x = 2

CZOS2

cos 2x = X - sin® x
= 2 cos2 XxX~-1=1=-2 sin2 X.
sin(-x) = -sin x,
cos (-x) = cos Xx.
There is at least one positive number x such that

cos x = 0.

-~

There is a unigue number a > 0 such that cos a = 0

and such that cos x is positive for 0 < x < a. We .

commonly denote the number 2a by .

The number m satisfies the inequalities -

3< 1< 3.6,

sin(n/2) = 1; sin x is strictly increasing on

[0,7/2]. cos(n/2) = 0; cos x 1is strictly decreas-
ing on (0,m/2].

sin x is strictly decreasing from 1 to 0 on
[(r/2,7]. cos x is strictly decreasing from O to
-1 on [n/2,7].

sin(x+m) = -sin x; cos(x+m) = -cos X.

sin(x+2m) = sin x; cos(x+2w) = cos Xx.
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Proof. The functions sin x and cos x are continuous

because they are differentiable. Applying Step 1 of the preceding proof

to the functions sin x and oos x » we see that sin2 X + cos2 X 1is K,

2 constant. Substituting x = 0, we have K = 1. Parts (a),

(b)Y, (c) follow.

To prove (d), define

u(x) = sin(x+a) = Sin x cos a - cos X sin a;
v(ix) = cos(x+a) ~ cos x cos a + sin x sin a.
Then u'(x) =v(x} and v'(x) = - u(x), as you can check. It follows

2 2

that u” + v® =K, a constant. Substituting x = 0, one sees that K = 0.

Then u(x) =0 and v(x) =0 for all x.

(e) These formulas follow at once from (d).

To prove (f) we set

u(x) = cos(-x) - cos x
v(x) = sin(-x) + sin x .
Then u' =v and V' = -u, as you can check. It follows that ul + v2 = K ,

a ccnstant. Setting x =0, we see that K =0 .
for all =x..

1}
o

Then u=0 and v
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(g) We suppose first that cos x > 0 for all x > 0
and derive a contradiction. If cos x > 0 for all x > 0, then
since D sin x = cos x, the function sin x is strictly increas-

ing for all x > 0. Therefore

0 = sin 0 < sin x < sin 2x = 2 sin % cos x

for all x > 0. We can rewrite this in the form
0 < {2 cos x - 1) sin x

for x > 0. Since sin x 1is positive, then 2 cos x - 1 is
positive, so cos x > 1/2 for x > 0. The comparison theorem

for integrals implies that

b (b
J cos x dx > j 1/2 dx, or
0 0

sin b > 1/2 b,

for all b > 0. This is impossible if b > 2.

Therefore cos b < 0 for at least one b > 0. Since
cos 0 = 1, the intermediate-value theorem applied to the interval

{0,b] gives us a point x such that 0 < x <b and cos x = 0.
(h) Let a be the inf of the set S consisting of those

. positive values of x for which cos x = 0. We show that
cos a =0. If cos a # 0, then by continuity there is an open
interval I about a on which cos x # 0. This fact implies
that the right hand end point of I 1is a lower bound for S,
a contradiction. Therefore cos a = 0. By choice of a, we
know that cos x 1is nonzero on the interval ([0,a). Because
cos 0 is positive, the intermediate-value theorem implies that

cos x must be positive for 0 < x < a.



We leave (i) as an exercise.

(j) Because cos(7/2) = 0, we must have sin(n/2) = =1.

Because ¢os x > 0 on (0,m/2), the function sin x 1is strict-

ly increasing on [0,7/2]; therefore sin(m/2) = +1. We know

cos (n/2) = 05 because D cos x = -sin x and sin X 1is positive

on (0,m/2), cos x is strictly decreasing on [0,7n/2].

Condition (k) follows by computing sin(x+7/2) and

cos (x+m/2); conditions (%) and (m) follow similarly. d

Remark. Conditions (j) - (m) suffice to show that the

graphs of y = sin x and y = cos x are the familiar wave-

shaped curves, as you can check.

325!5 X 4 Yy =cos x
-j_ .-
} ‘I / 1 f .
o ' o T ‘ "o
C T T\ 3% Jar < L gzz- Q1
..‘L = - -1 1

Definition. We define tan x = (sin x)/(cos x) and

sec X = 1l/cos x. This definition makes sense whenever cos x # 0;

i.e., whenever x # kv + 7/2, where k is an integer.

2

Theorem 4. (a) D tan x = sec” x: therefore tan x

T g ————  o—  eoeomattry

(b) tan 0 = 0; tan(~x) = -tan x; tan x is unbounded

above and below on the interval (-m/2,7/2).



tan x.

(c) tan(x+m)

(d) tan(x+y) (tan x + tan y)/(1 - tan x tan y) if

tan x and tan y and tan(x+y) are defined.

{e) D sec x = sec x tan x.

(£) 1 + tan2 X = sec2 X.

Proof. The proof is left as an exercise.[]_

Exercises.

1. Prove the half-angle formulas

2

cos® x = %(l + cos 2x), sinz

X = %(l - Ccos 2x).

2. Show that sin (n/4) = cos (n/4) = 1//%Z.

3. (a) Show that

cos 3x = 4 cos3 X - 3 cos x.

Compute cos n/6 and sin /6.
(b) Compute cos 7/3 and sin n/3.
4. Prove Theorem 4. _
5. (a) Showthat Y3/2<cosx £ L for 0 x<®/6 .

(b) Appiy the camparison theorem for integrals to the inequalities
of (a) to conclude that 34 3.6
6. ‘Use the half-angle formulas and the substitution rule

to compute

T/3 2
' f " 8in® x dx.
0



Remark on motivation

The general pattern of the developme

have been established, is to introduce and st
applications. ' !

The most elementary such functions a.ré

nt of calculus, after the basic theorems

dy various functions that arise in the

of course those involving only algebraic

operations: the integral powers of x, the polynomial functions, and the rational functions.

The next functions one studies arise naturally from certain realdlife situations, which are

important enough to study in detail. Both the trigonometric functions and the exponen-

tial function arise in this way, as we now describe

In a first course in irigonometry, the
introduced as functions of an angle, and their st
"solving triangles", a problem of importance to n
is of course misleading, for one would never includ
if that were their primary use. |

In fact, their importance comes instead

sine and cosine functions are usually

udy is motivated by their usefulness in

avigators and surveyors. This approach

e them in a beginning course in calculus

from a physical situation called "simple

harmonic motion" or "one-dimensional vibration!. It arises fr uently, and is character-
eq

ized by the equation
£*(x) = —k°f(

This equation is called a differential equation b

unknown function f(x) and one or more of its d

X).
ecause it i an equation involving an

erivatives. "Solving" such an equation

means finding a function satisfying the equation. This particular equation arises, for

example, in describing the motion of a particle act

ed on by a force that is proportional to

the displacement of the particle from its "rest" position. The sine and cosine functions

arise in solving this equation; one checks readily

that the function sin kx and cos kx do
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satisfy this equ#tion. But more generally, it is a fact that every solution of this equation
can be expressed in terms of these two functions. This we now prove: |
Theorem 6. Suppose f(x) is defined for all x, and satisfies the equation
£ (x) = —k%(x),
where k # 0. Let a = £(0) and b = £ (0). Then
f(x) = a cos (kx) + b sin(kx)
for all x. .
Proof. We show that given k and a and b, there is at most one function f(x)
satisfying the conditions:
f*(x) = -—sz(x),
1(0) = a,
£(0)=0.
The theorem follows, since the function f(x) = a cos(kx) + b sin(kx) does satisfy these
conditions, by direct computation.
So suppose f and g are two functions satisfying the given conditions. Set
u(x) = f(x/k) ~ g(x/¥),
v(x) = gt (x/k) — g (x/k)].
Then
u’(x) = v(x), and
vi(x) = kl,{f' (x/k) — g* (x/¥)] = ~u(x).
It follows from the proof of Theorem 2 that u? + v2 is constant. Setting x = 0, we see

that this constant is zero. Thus u and v are identically zero. o
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The exponential and logarithm functions

In this section, we study the exponential and logarithm functions and derive
their properties. _

We also define a.b for a > 0 and b arbitrary, and we verify the laws of expo-
nents.

As we did for the trig functions, we shall assume a theorem concerning the
existence of the exponential function, postponing the proof until after we have studied
power series. Thus we assume the following:

Theorem 1. There exists a function E(x), defined for all real numbers x,

satisfying the following conditions
E (x) = E(x); E(0) = 1.

We call E the exponential function, for reasons to be seen. It is sometimes
denoted exp(x). |
Theorem 2. (i) The equation
E(a+b) = E(a)E(b)
holds for all a and b. In particular, E(a)E(—a) = 1 for all a.
' (ii) E(x) is continuous, positive, and strictly increasing.
(iii) The conditions E (x) = E(x) and E(0) = 1 determine E(x) uniquely.
(iv) If n is an integer and a is a real number, then
E(na) = E(a)™.
In particular, if e is defined by the equation e = E(1), then
E(n) = ™.
This equation shows why E is called the "exponential function".



(v) The number e satisfies the inequalities
2<e<d.
(vi) E(x) takes on every poSitive real value exactly once.
Proof. (i) For fixed b, let us set
f(x) = E(x+b)E(—x).
Then
f'(x) = B (x+b)E(=x) — E(x+b)E  (~x)
= E(x+b)E(—x) — E(x+b)E(—x)
= 0. |
Hence f equals a constant K. Setting x = 0, we see that K = E(b). Thus
*) | E(x+Db)E(—x) = E(b)
for all x and b.
If we set b = 0 in equation (*), we obtain the equation
E(x)E(—x) =1,
which holds for all x. If then we multiply both sides of equation (*) by E(x), we obtain
the equation
E(x)E(x+b)E(—x) = E(x)E(b), or
E(x+b) = E(x)E(b).
Setting x = a gives our desired equation.
(ii) E(x) is continuous because it is differentiable. The equation
. E(x)E(x)=1
intermediate
implies that E(x) # 0 for all x. The ' A —value theorem then applies to show that, since
E(x) is positive for x = 0, it is positive for all x. It follows that E'(x) = E(x) is positive

for all x, so that E is strictly increasing.
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(iii) Let E(x) be another fuﬁction satisfying the given conditions. Set
| g(x) = E(x)E(—x).
One checks readily that g’(x) = 0, so that g(x) is constant. Setting x = 0, we see this
constant is 1. Hence E(x)E(—x) = 1, or E(x) = E(x).
" (iv) One proves the result for positive integers by induction: The equation
E(na)= E(a)™
holds for n = 1, trivially. If it holds for 1 , compute
E((n+1)a) = E(na+a,
= E(na)E(a; by (i)
= E(a)"E(a) by the induction hypothesis,
= E(a)n+1.
The equation holds when n = 0 by definition (both sides equal 1), and it holds for nega-
tive integers because E(na) E(-na) = 1, so that
E(—na) = 1/E(na) = 1/E(a)"
(v) Because E is increasing, E(<) - 1 for x > 0. The comparison theorem implies

that
1 1
1¢ J E(x)dx = J E’ (x)dx = E(1) —E(0) = e — 1.
0 0

Hence e > 2. We leave the other inedua.h'ty as an exercise.
(vi) It follows from what we have proved that
E(n) =e" > 2%, -and

E(-n) = 1/E(n) ¢ 1/2".

Given any positive real number r, we may choose a positive integer n such that
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n n intermediate .
1/27<r<2". The  p—value theorem then implies that E(x) takes on the value r for

some x in the interval [-n,n]. o
Remark. Since e® = E(n) for all integers n, it seems reasonable to define e* for
arbitrary real x by the equation e* = E(x). Theorems 1 and 2 can then be restated in this

new notation, which is standard, as follows:

g;(ex)=ex a.ndjexdx=ex+C
ea+b —ed. eb,
n
ena = (ea)

The latter two equations are special cases of the laws of exponents, which shall prove

shortly in full generality.
Remark. The preceding theorem implies that the function E(x) = e* has the

following familiar graph. (It is concave upwards because E*(x) = E(x) > 0.)
3 .
y=e
—/ 1
(Exercised1. Show that
- 1/2
%sjo E(x)dx ¢ 1 6.

Show the integral equals ye — 1; conclude that 2.25 ¢ e < 4.
2., Show more generally, by integrating E(x) over the interval [0,1/n], that

1/n¢"E—1¢ /.

Conclude that
1,2 1,2+l
(143) <e<(1+p)
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m=4
These inequalities give a (not very useful) way of computing e. Try n = 2 and o==3 in

these formulas, using your calculator.

{The logarithm function.

Definition. The function e* is strictly increasing and takes on each positive

value exactly once. We define the (natural) Jogarithm function to be its inverse. That is,

if y is any positive number, we define
logy=x ifandonlyif y=-e~.
The logarithm function thus has the graph

%
R

v s

It is strictly increasing and continuous. It is defined only for y > 0, and it takes on every
real value.
The fact that these functions are inverses of each other implies that:
elogyzy if y>o0,
log(eX) =x forall x.
Theorem 3. The logarithm function has the following properties:
(i) $(iogx) =1 and
Hdnlog x| + C.
(i) log (ab) = log a + log b if a and b are positive.
(iii) log(a™) = n log a if n is an integer and a is positive.
Proof (i) Let f(x) = €* and g(y) = log y. Then g is the inverse function to f. We

use the formula for the derivative of an inverse function:
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S'(Y)=p—(é-(§)')'-
Nowf'(x)=f(x) for all x, so
=1 1 _1
B0 =1~ sy ¥

since f(g(y)) = ¢'%8 7 =y.

If x is positive, the derivative of log|x| = log x is 1/x. If x is negative, the

derivative of log |x| = log(—x) is (-1)/ (—x) = 1/x. Thus J dx/x = log|x| + C.
(ii) Given a and b, let
x=loga and y=1loghbh.
We have the equation
' Y = ¢ . &Y,
Since both sides of this equation are positive, we can take their logs to conclude that

x 4 y = log(e®.¢&Y),

so that
' loga +log b= log(a-b),
as desired.
(iv) Given a > 0, let x = log a. Then a = e*, 50
al = (ex)n = e™™ by (iv) of Theorem 2, '
so that
log a = nx = n(log a). O

Theorem 4. There is one and only one function a*, defined for all positive a and

all real x, such that the following four conditions hold:

(i) The function a* is positive and continuous.
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(ii) al =a.

(iii) a*tY = a¥a¥.

(iv) (a,x)y =a%.
This function satisfies the following additional conditions:

(v) a*b* = (ab)*.

(vi) loga® = xloga.
Proof. Uniqueness. Suppose a* is defined and satisfies conditions (i) — (iv). Conditions
(i) and (iil) imply that

al=a and 2%l a.r_l-a
for every positive integer n. The equation
al.0 = 170 _ 1
implies (since a > 0) that ao = 1. Finally, the equation
ala =20
implies that
a T =1/a"

Hence integral powers of a must be defined as we have defined them earlier.

Now if n is a positive integer and m is any integer, (iv) implies that

(al/p)n = a o a/?-= LV
‘Then, using (iv) again, we see that

@™ = @M = (AEH"

Thus for x rational, a* is completely determined by conditions (i) — (iv) and positivity.
Continuity now implies that a* is determined for all x: Suppose f(x) and g(x)

are two functions that satisfy (i)—iv). Let x be arbitrary. Given ¢ > 0, choose § so that
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| {(x)—f(xy)| < € and |g(x)—g(x0)| < € for |x—x)| < & Then choose x, rational with
|x,—%¢] < 6. It follows from what we have already showed that f(x;) = g(x;). Then
|f(xq)—8(xg) | < 2¢. Since ¢ is arbitrary, we must have f(xy) = &(xg)-

Existence. We motivate the definition as follows: .If n is a positive integer,

then
n " n
log a = log("ya) =nlog "a,
so that
n T n m
log ("v2) =mlog va=—loga,
or

(V8 = B2 loga).
This equation suggests the following definition.
We define, for arbitrary x,
a* = E(x log ).
Then condition (vi) holds trivially, for log a* = x log a by definition.

~ We show that the other conditions of the theorem are satisfied:

() a™ is positive and continuous.

(ii) al = E(log a) = a.

(i) a*"Y = E((x+y) log a) by definition,
= E(x log a+ y log a) by distributivity,
= E(x log a) - E(y log a) by Theorem 2,

=a%.aY. by definition.
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(iv) (a*)Y = E(y log a¥) by definition,
= E(y(x log 2)) by (vi),
= E((xy) log a) by associativity,
=a"y, by definition.

(v) (ab)* = E(x log (ab)) by definition,
= E(x(log a + log b)) by Theorem 3,
= E(xlog a + xlog b) by distributivity,
= E(x log a) - E(x log b) by Theorem 2,
=a" . b~ by definition. o

Theorem 5. Let ¢ be a real constant. Then

D(x%) = &L if x> 0,

c <°tl .
JX dx=m+0 lfc#—l and x > 0.
Proof. Since x® = E(c log x), we can use the chain rule. We have

D(x%) = E(c log x)D(c log x)

= E(c log x)c/x
= x%(c/x) = L.
The integration formula follows at once. o
Theorem 6. Let a be a real constant. a > 0. Then

D(a™) = a* log a,

a¥dx = ol +C ifatl
~log a '

The proof is left as an exercise
For other differentiation and integration formulas involving logarithms and

exponentials, see 6.7 and 6.16 of Apostol.
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Remark concerning common logarithms.

The logarithm function we have defined is sometimes called the "natural
logarithm". A different version of the logarithm was once useful. It can be obtained as
follows: Consider the function

f(x) = 10 = E(x log 10).
It is strictly increasing, since by the chain rule,
f (x) = E(x log 10) - log 10,
which is positive. Furthermore, since x log 10 takes on all real values, E(x log 10) = {(x)
takes on all positive values. The inverse of f is called the "common logarithm" or the
"logarithm to the base 10", and denoted by log10 y. That is, if y > 0, we define
log)q ¥y = x if and only if y =10,
This function was at one time useful for computational purposes, but it has long since
fallen into oblivion.

A similar remark applies to obtain logarithms to other bases. If b is any positive

number with b # 1, one defines
logb y =x ifand only if y = b*.

Remark on motivation

Just as the sine and cosine functions arise most naturally as the fundamental
solutions of the differential equation for simple harmonic motion, so the exponential
function arises most naturally from consideration of the important differential equation

£ (x) = ki(x),
called the "equation of population growth (or decay)." If k is, for instance, the difference
of the birth and death rate (per thousand, say, of a population) in a given time period,

then this is the equation for the actual population (in thousands), as a function of time.



M.11

kx satisfies this equation. More generally,

every solution of this equation can be expressed in terms of ekx:

One checks at once that the function e

Theorem 7. Suppose f(x) is defined for all x and satisfies the equation
£ (x) = ki(x).
| Let f(0) = a. Then
f(x) = 2e**.

Proof. Let us set

g(x) = {(x)E(-kx).
Then we compute
g (x) = f (x)E(-kx) - Ki(x)E (-kx) = 0,
so g is constant. Since g(0) = (0)-E(0) = a,
g(x)=a.
Multiplying by E(kx), we have {(x) = aE(kx), as desired. -0

!

Exercises
1. If a is constant, show that in general

D(a*) ¢ xax—l, and

x+1
o axt i
[Anyone who makes the mistake, on a quiz, of thinking these are equalities gets
clobbered!]
1

' 1
2. Evaluate J 7~ dx and J xT dx.
0

0
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[Integration]

The substitution rule

Apostol proves only one version of the substitution rule, the one given in Theorem 1
'following. Sometimes the converse is needed; we prove this result in Theorem 2.

Theorem 1. Assume that f(u) and g(x) and g’(x) aze continuous, and that f(g(x)) is

defined for all x in the domain of g. If
I f(u)du = P(u) + C, then

[ fee (x)ex = P(g(x) + C.
Proof. We are given that P’ (u) = f(u). The chain rule implies that the derivative of

P(g(x)) equals
P (g(x))g’ (x) = 1(g(x))g’ (x)-
This is just the desired result. o
Theorem 2. (Partial converse) Assume that f(u) and g(x) and g’(x) are continuous,
and that f(g(x)) is defined for all x in the domain of g. Assume also that u = g(x) has the

differentiable inverse function x = h(u). If
™ [ e (iax = G0N+ €, then
(**) | [ ttaydu = G Catw))+ €.

Proof. Applying Theorem 1, we can substitute x = h(u) in the given formula (*) to

obtain the equation

j [f(e(ba))e (a(u)fp’ (u)du = G (hlw)) +C..

Because h is the inverse function to g, we know that g(h(u)) = u and

h’(u) = 1/g’ (h(u)).

This formula thus takes the form

[ tw)an = QAL + C.

which is the equation we wished to prove. o
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Example 1. The usual application of the substitution rule uses Theorem 1. One
begins with the given integrand, and tries to write it in the form f(g(x))g’(x) for some
suitable function f and g, where f is a function we know how to integrate. For example,

suppose we wish to compute the integral

2 cos(x3)dx.

2 That is, we "group x2 with

We see this is almost of the form J cos u du if we set u = x
dx and supply a factor of 3", writing the integral in the form
;j cos (x3)[3x2dx).
Theﬁ because we know that J cos u du = sin u + C, we conclude from Theorem 1 that our
given integral equals
%sin(x3) +C.

Example 2. On the other hand, sometimes Théorem 2 i the one that is useful. It

often applies when there is nothing obvious to "group with the dx" to simplify the

integrand. Trigonometric substitutionsare of this type.

For example, consider the integra.lJ f(u)du, where

f(u) = }/'fl.-l-—uz .

This is not something we know how to integrate. However, the substitution u = tan x w2l

simplify the expression ¢ 1+u2 at least. It is an acceptable substitution, since it has the
differentiable inverse function x = arctan u
Using this substitution, we have

2 2 2

14+u”"=14+tan” x =sec” x.

Then

14+u” = sec "x;
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the sign is +, because x lies between —7/2 and + x/2, so sec x = 1/cos x is positive.

And of course we have

y
'*Lb = sec2x.

Hence the integral

[/ 1rada

takes the form
J (1/sec x)sec2 x dx
which we know how to integrate. Indeed.,
Isecxdx=log|secx+ tan x| + C.

Then we can apply Theorem 2 to conclude that

J [1 i 1+u2} du = log|sec(arctan u) + tan(arctan u)} + C.

This answer can be written more simply. For if x = arctan u, then sec x = / 1+u”, as

noted earlier, and tan x = u. Hence we have the formula

J [//Tﬂ?]du:loglm+ u| +C.
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A strategy for integration.

Step 1.) Determine whether you can simplify the integrand

easily, using algebraic manipulations (such as completing the

square), trig identities, or a simplifying substitution
(especially for the "inside function" in £(g(x)).)
Examine the form of the integrand to determine
the appropriate method.
(a) A product of two dissimilar functions suggests

integration by parts. [Examples: x? sin x, xe*.] The same

holds for a function whose derivative is a more familiar func-
tion than the function itself. [Examples: log x, arctan x.]

(b) Rational functions of x can always be integrated by

the method of partial fractions.

(c) Powers of trig functions can be integrated using the

half-angle formulas, various substitutions or (if necessary)
reduction formulas.

(d) For integrands involving Vaz-xz, 'YQE:;ET ‘sz—az,
a trig substitution is often helpful. -

(e) [Optional: Any rational function of sin x and
cos x can be reduced to a rational function of u by means

of the substitution u = tan(x/2).]



Exercises

Evaluate the following:

1. J c052 X d=x.

(Use either a half-angle formula derived from the identity
, 2 2 :
cos 2x = 2 - 2 sin" x = 2 cos x -1

or the reduction formula of p. 221.)

1/2 >
2. f 1 -u® du.
0

3. Integrate J I—%ﬂaj by expressing I—fLIT in the

b
17

a
form — m 1

h Use this formula to evaluate

J sec x dx = J Sgﬁ_g_gi - f . cos x dx ]
cos X 1 - sin” x

o= 1

s .
O (A?+ 1

6. Compute »
j xf "(2x) dx,
0

given that £ " is continuous for all x, and

fo)=1, f-(0) =3.
f1)=5, f/(1) = 2.
f(2) =7, f’(2) = 4.
x4 + 2 )
7. Evaluate 1 T 5 dx completely, including the constants
x +x° + x

A, B, ... in the partial fraction decomposition.



Chapter 7 Taylor's formula.

If f(x) has derivatives of orders 1,...,n at the point

X = a, then the polynomial function

Tn(x) =Aa0 + al(x-a) + see + an(x—a)n,
where
. - £ (m) (a)
m mi
for each m, is called the nEE order Taylor aéproximation to

f at a. It has the crucial property that it agrees with £ at
a, and that also its first n derivatives agree with those of
f at a. (See 7.1 and 7.2 of Apostol.)

In order to use this approximation for either practical
or theoretical purposes, we need to find a way to obtain an upper
bound on the difference between f and its Taylor approximation.
Let us define En(x) = f(x) - Tn(x). Then we have the equation

<

£(x) = T (x) + E_ (x),

which is called Taylor's formula. Here En(x) is called the

remainder term, or error term, in Taylor's formula.

There are a number of different formulas involving En(x);
all involve (x-a) and f(n+l)(x) in some way. (See 7.7 of

Apostol, where four different ways of expressing E (x) are



given.) Each of these expressions is useful in situations where
the others are not much heip; the study of such formulas leads
to a general subject called Numerical Analysis. Here we are
going to derive and use just one of these expressions, the one

called the Lagrange form of the remainder.

First, we need a lemma.

h(n+l)(x)

Lemma 1. Suppose exists on an open interval.

I. (This implies that h(x), h'(x),..., h(n)(x) exist and are

continuous on this interval.) Let a and b be points of this

interval; suppose that

h(a) = h*(a) = *++ = h™ (a) = o,
and

h (b)

]
o
.

Then there is some point ¢ between a and b for which

h(n+l) (c) =0

Proof. We suppose for convenience that a < b. (The same
proof works if b < a). Because h(a) = h(b) = 0, the mean value
theorem tells us there is some point ¢, with a < ¢y < b such
that h'(cl) = 0. Now because h'(a) = h'(cl) = 0, the mean-value
theorem, applied to . h'(x), tells us there is some point CyH

with a < Cy < cy .such that h"(cz) = 0,



Similarly continue. At the nEE stage, we have a point

ch > a such that h(n)(cn) = 0. Since h(n)(a) = 0, we can

apply the mean-value theorem to h(n)(x) to find a point ¢

with a <e¢ < s such that h(n+l)(c) = 0, O
| (n+1) . . .
Theorem 2. Let £ (x) exist in an open interval I.

Let a be a point of I. Let T,(x) be the nth order Taylor

approximation to f at a; let E (x) = f(x) - T (x). Then

given x in I, there is a point ¢ between a and x such

that

f(n+l)(c)
En(X) = W (x-a)

n+l

This expression is called the Lagrange form of the remainder.

Proof. Let b be a fixed point of the interval I differ-
ent from a. We show there is a point. ¢ between a and b
such that

{n+1)
- £ (€} (e
En(b) = TmED T (b-a)

n+l
Since b 1is arbitrary, this will suffice.

Consider the function En(x) = f(x) - Tn(x). Because the
functions £f and Tn and their first n derivatives agree at

a, we have



(*) E_(a) = El(a) = +++ = E{™ (a) = 0.

Thus part of the hypothesis of the preceding lemma is satisfied.
Of course, En(b) is not zero, in general. We seek to modify

E by adding a suitably chosen function, so as to get a func-

nl
tion h{x) that does wvanish at b, but which has the same

derivatives as En does at a (so that condition (*) still

n+l

holds). A multiple of (x-a) will do the job, for the first -

1

n derivatives of (x--a)n+ all vanish at a. The (n+l)§E

derivative of (x--a)n+l does not vanish at a, of course. In
~fact, the (n+l)§5 derivative 1is just the constant (n+l)!.
So let us define

hix) = E_(x) - A(x-a)™*L,

where we choose the constant A so that h(b) = 0. That' is,
we let A = En(b)/(b-a)n+l. The hypotheses of the preceding
lemma are then satisfied. We conclude there is some point ¢
between a and b such that n 8+ () = 0.

Now we compute h(n+l)(2). Recall that

h(x) = E_(x) - Ax-2)" = £00 - T (x) - Aax-a)?TL

Because Tn(x) is a polynomial of degree n, its (n+l)§§

derivative vanishes. Therefore we have



h(n+l)(x) - f(n+l)(x) - 0 - (n+l)!A

f(n+l)(X) -.(n+l)!En(b)/(b"a)n+l'

We substitute ¢ for x, and recall that h(n+l)(c) = 0.

Solving for En(b), -we have

(n+1)
_f (c) n+l
En(P) = Zrmpyr - (brad

as desired. g

Theorem 3. 1If the (n+l)§E derivative of f satisfies

the inequalities

m< £P™1) () <M

for all x in some interval about a, then for all x in

this interval, we have

m(x-a)n+1 (x-a)n+1
—fTH:ITT— < En(x) <M TmED T

. + . f e . . C s
if (x-a)? ! is positive; otherwise, the reverse inequalities hold.

Proof. We apply the preceding theorem to calculate En(x).

Multiplying through



f(n+l)

m S (c) < M

+ 3 13 [] -
by the number (x-a)" 1/(n+1)£ gives us the desired inequalities. T}

Application: Taylor's formula applied to indeterminate forms.

We can calculate limits for most familiar functions by
using our basic theorems on limits, along with the continuity
properties of the elementary functions. One situation where -
these theorems fail us is when we consider a limit of a
quotient,

lim g%ﬁ% '

x>a 9
where the denominator approaches 0 as x —> a. In this
case, anything can happen. If f£(x) approaches a limit A

different from zero and g{x) approaches 0, then the limit

of f(x)/g(x) does not exist. If, however, £(x) and g(x)

both approach zero, then the quotient may approach a finite

limit. For example:

lim xx_-24 = lim (x+2) = 4
xX+2 x+2

(x-2) 2 x-2
lim —7—-— = lim ‘xTz- = 0
x+2 X" -4 x+2

x2-4 %x+2

lim lim

3 ’ which does not exist.
x+2 (x-2) x+2

b
i
N



Taylor's formula can sometimes be of help in computing

limits, if one knows the Taylor polynomials of the functions

g glotl)

involved. 1In general, is contiruous on an interval

containing a, we have the formula

£(m) (4

—2L(x-a)" + B(x) (x-a)"*1

f(x) = f(a) + f'(a) (x-a) +...+

n+l)

where B(x) =.f( (c)/(n+l)!. We do not know exactly what B(x)

is, but we do know it is bounded on the interval in question,

f(n+1) is continuous. We use the letter B to remind us

because
it is bounded.
We have for example the formulas

e =1+ X + x2/2! ...+ xn/n! + B(x)xn+l,

log(l+4x) = x - %; + %; - e+ (—_l)n'l %; + B(x) "1,
and so on for other elementary functions. Here is how these
formulas can be used in calculating limits.

Exambie 1. Calculate the limit as x —> 0 of
(sin x)/x. Now

sin x = x - x3/3! + Bxs, SO

sin x
—_— =1



which approaphes 1l as x approaches 0. (Since B is a
bounded function of. x, we have Bx4 —> 0 as x —> 0.)
Example 2. Calculate 1lim(cos x-1)/x sin x as

x —> 0.

cos x =1 - x°/2! + Bx

sin x = x - x3/3! + st
cos x -1 _ - x2/2! + Bx4 - - 1/2 + sz

z - - ’
X sin x x%-x%/31 + cx® 1 - x%/31 + ox?

which approaches -~ 1/2 as x —> 0.

Example 3. Calculate 1lim(x cot x - l)/x2 as x —> 0.

cos x _ 1l - x2/2! + Bx4

5 2
sin x X - x"/3! + Cx5

cot X =

xcot x =1 _ (x—x3/2!+Bx5) - (x-x3/3!+Cx5)
X xz(x-x3/3!+Cx5)

- x3/3_+ (B-C)xi

x3 - x5/3! + Cx7

- 1/3 + (B-C)x%
1 - x2/3! + Cx4

which approaches - 1/3 as x —> 0.

Example 4. Calculate 1lim(cos(ax) - cos x)/x2 as

X ——> o.



cos(ax) =1 ~ (ax)z/z + B(ax)(ax)4.

cos(ax) - cos x = ~(ax)2/2 + x2/2 + B(ax)a4x4 - B(x)x4

Hence (cos(ax) - cos x)/x2 _ (1-a2)/2 as x —> 0, since both

B(ax) and B(x) are bounded.

Example 5. Calculate the limit of (log(l+ax))/x as

X —> 0.

log(l+ax) = (ax) - (ax)2/2 + B(ax) (ax) 3,

so (log(l+ax}))/x —> a as x —> 0.

Example 6. Show that (l+ax)1/x —> e as x —> 0. Now
(l+ax)l/x = E((1/x)log(l+ax)). By continuity of the exponential
function, it suffices to show that (1/x)log(l+ax) —> a. This

is done in Example 5.



Exercises

Throughout, we use Taylor's formula with the Lagrange form of

the remainder: f(x) = Tn(x) + En(x),
_ 2l n+l
En (x) = mFl) 1 (x-a) .

where

1. Derive the following from Taylor's theorem:
(a) Given x, there is a ¢ between 0 and x such that
2 n c
X _ X~ X e n+l
e = {% rrY S TR F n{] T T X -
(b) Given x > -1, there is a ¢ between 0 and x such
that
2 3 n n n+1l
-1 x (-1) X
log(l+x) = [x - 2+ X_ 4+ ..+ (-1 + X} . .
[ 2 3 n (}.+c)n+l n+l

(c) Given x, there is a ¢ between 0 and x such that

B 3 5 2n+l1

. — X X~ _1yn X _1yhtl cos c 2n+3
51nx—x~§—!-+ﬁ- .-.+(l)m-r-1]+(l) -(2]:1_+3TT ,
.
B 2 4 2n
b 4 b 4 n x n+l cos c¢ 2n+2
cos x = |1l =57+ 37~ ... + (1) TfET%J + (~-1) Tns) T X .
Learn the Taylor polynomials for e®

cos X.

» log (1+x), sin x and




2.(»use the third order Taylor approximation for e* near

x = 0 and the fact that e < 4 to show that

8 1 8 1
3tIgT<e<3zty

whence it follows that 2.7 < e < 2.9.

() Now use the same Taylor approximation and the fact that

e < 3 to show that

L

5 < e<

8
3 *

wlo
+
Q0|

whence 2.7 e<2.8.

3. Use the first and second order Taylor approximations to /X
near a = 4 to compute /3.8. (Actual value is 1.949359...)

4, Use the third order Taylor approximation to sin x near
a=0 to compute sin(l/2). Obtain an upper bound on the
error.

5, What order Taylor polynomial should ohe use if one wishes to
compute e to two decimal places of accuracy (i.e.,
with an error less than .005)? Use the fact that e< 3.

Obtain an upper bound for the error. What about computing
log 27

6. (a) Show that the inequalities
x - x3/31 € sin x € x - x3/3! + x°/5!

hold for0€x < W/2. [Hint: Consider the sign of the

error term.]
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0,12

(b) Use these inequalities and your trusty pocket calculator
to .show that sin .323 < 1/2 and sin .524 > 1/2. (Be
sure you allow for round-off error.)

(c) Since sin /6 = 1/2, conclude that
3.138< 7T < 3.144.

These inequalities give the approximation T ~3.14 with

two decimal places of accuracy.

Find the ;imit as x -—> 0 of the function

2
sin x - xe(x ) + 7x3/6

(sinzx)(sin x3)

‘For what range of values of x can you replace cos x by

1 - x2/2 + x4/24 with an error no greater than 5 x 10742

The approximation (1+;-:)l/3 n 1 + x/3 1is often used when
|x] 4is small. Find an upper bound for the error if
0. <x < .01.

(a) Show that if |[x] < 1, then

le*X - (1+x+x%/2)| < | x°/2].
(b) Sﬁow that if |t| < 1, then the approximation
It X dx n £ + £3/3 + £5/10

0

involves an error in absolute value no more than

[ t7/14[.



[i}Hopital's rule for O/OJ

Theorem. Suppose £f(x) —> 0 and g(x) —> 0 as
x —> a. If

fl

S a e

then also £(x)/g(x) —> L as x —> a.

This result holds whether a and 'L are finite or

infinite, and it also holds if the limits are one-sided.

Proof. The proof when a 1is finite is that given on
p. 295 of the text. The crucial step is to use Cauchy's
mean-value theorem to prove that g(x) # 0 for x near a,

and that

f(x) _ f£'(c)

g (x) g'(c)

for some ¢ between a and x. It follows that if
f'(x)/g'(x) approaches L as x —> a, then f£f(x)/g(x)
must approach L also. In the text, it is assumed that L
'is finite. But it does really not matter whether L is
finite or infinite; precisely the same proof applies.

The proof in the case a = += 1is given on p. 298 of
the text. Again, it is assumed that L is finite, but that
doesn't matter; if L is * = precisely the same proof
applies. O

Remark. L'Hopital's rule also works if £f(x) and

g(x) both approach = instead of 0. But the proof is more
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complicated. We shall give a proof shortly. The only cases of interest to us

concern the logarithm and the exponential. For these functions, a direct proof

is given on p. 301 of the text. Alternatively, they may be treated by using

L'Hopital's rule for the casew /g0, as we shall see.

The behavior of log and exp that we are concerned with is stated

in the following theorem:

Theorem. As x —> +», both log x and e*¥

approach

log x approaches = more slowly than any gésitive

ower of x, and e* approaches = more rapidly than any

positive power of X, the same holds for any positive powers of

x
log x and e . More precisely, if a and b are positive real

numbers, then

b x.b
lim 1o ax =0 and lim {e7) = +o0
Xed &= X Xp4¢* . xa

Corollary. The function 1log x goes to -« very slowly

as x goes to O. More precisely, if a is a positive real number, then

lim x2 logx = 0.
x=>0+
What dces this theorem mean? Note thﬁt for any function f£(x) that
goes to ¥ as x goes to @, a positive power of £(x), 'say [f(x)]a) goes
t0 0@ even more rapidly if the power a 1is large, and to goes to & more
slowly if a 1is small. This theorem séys that no matter.; how high a power b
you raise 1log x to,and how small a power a you raise x tg, the power of

log x will still go to @ more slowly than the power of x. Similarly, any
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b'd .
power of e% , no matter how small, will go to 20 Ffaster than any powar of i
S

B Y4

no mattar how large.

For example, even though for small values of x, the

.0001

graphs of the functions 1log x and x appear as in the

accompanying figure, it is still true that eventually the
.0001

function f(x) = x becomes much larger than log x.
c00]
L b h
%:,&}x
: L -
L r R 3
Similar graphs for the functions xl0,000 and e* can be

obtained by exchanging the axes in this figure. Although

x10,000 shoots up very rapidly to begin with, eventually e*

becomes much larger than xl0,000' (In fact, these curves
cross again between x = 105 and x = 106.)
3 r )

fo oco

4=’
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L’Hopital’s r

Theorem. Suppose f(x) +o and g(x) +o agsx~a. If

then also f(x) /g(x) — L as x — a.

—_—— e = ey e e e _— — e e T L 2

are one—sided. '

Proof. Case 1. We prove the theorem first in the case where a is finite and x —
a+.

The hypotheses of the theorem imply that f and g are defined and positive on some
inteﬁd of the form (a,b}, and that {* and g’ exjst and g’ # 0 on some such interval.

Let Xg be a fixed point of this interval. (We shall specify how to choose Xy latei'.)
Then let x be a point of this interval that is very close to a. Just how close will be
determined later. For now we merely require that a < x < x; and that f(x) > f(x;) and
g(x) > g(x;). (Since f and g go to m a3 x ~ a+, these inequalities hold if x is close enough to
a.) Then we compute.

Let us apply the C.auchy mean-value theorem to the interval [x,xo]. We conclude
that thereis a c withx < ¢ < X, such that

£ (0)lg(xg)-8(x)] = & (O)lf(xp)—4(x)]

or

£ (c)e(x)lg(xy)/a(x) —1] = g’ ()H(x)[ f(xq)/f(x)-1]

[(g(xo)/g(X)) - 1]
H _8 ((x)/ilx)) - 1
For convenience, let A(x) denote the expression in brackets; then

f(x) _f/(c
13- i

Oor

Note that A(x) - 1 as x = a+.
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Now we verify the theorem in the case where L is finite. By choosing X close to a,
we can ensure that {7(c)/g’(c) is close to L (since a < ¢ < x;)); then we can make A(x)
close to 1 by requiring that x be very close to 2. Then f(x)/g(x) will be close to L. The only
question is: how close is "close enough"? Let us set

e, = |(£(c)/g’(c)-L] and &= [A(x)-1].
Then
(*) {32011 = 1(Lee)(teedLl < ey + [Leyl + leyeyl.
This inequality tells us how to proceed. Suppose 0 < ¢ < 1. First, we choose X, S0 that for
all ¢ with a < ¢ <-x;, we have ¢; < /3. Now X is fixed. Then choose § > 0 so that for
a < x < a+4, we have g(x) > g(x;) and £(x) > f(x,) and
[ A(x)-1] = €5 < €/3(1+]|L}).
Then for a < x < a+4, inequality (*) tells us that
|§§}-L| = Ié{g—:}/\(x)—Ll g§+§+£§< ¢ as desired.

Finally, we consider the case where L is infinite. Given M > 0, we want to show
that f(x)/g(x) > M for x close to a. First, choose x,, so that for all ¢ with a < ¢ < x,, we
have f” (c)/g’(c) > 2M. Then choose § so that for a < x < a+4, we have g(x) > 8(x,) and
f(x) > f(x,) and A(x) > 1/2. It follows that, fora < x < a—i; 8, '

ég-} - g%)\(x) >Mi=M

We have now proved the rule in the case x -+ a+. The case x -+ a— follows readily, as

we now show. Note that as x approaches a from the left, u = a—x approaches 0 from the

right. Then
lim (f(x)/g(x)) = lim f(a—u)/g(a—u)
x-a— u-0+
" =lim (-1)f’(a—u)/(-1)g’ (a—u)
w04

=lim {'(x)/g’(x),
x+a—
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if the latter limit exists.
The case x - a, with a finite, follows from the two cases x - a+ and x - a—.
Finally, the case x - o follows from the computation
lim f(x)/g(x) =lim £(1/t)/g(1/t)
X2 o t~0+
. 2
=lim (=1/)(1/8)/(=1/tP)g (1/4)
t-0+
= lim {(x)/g’ (x),

X-o

if the latter limit exists. o

‘The behavior of log and exp]

We now derive the theorem on p. P.2 from L’Hopital’s rule. Consider first the log

function. Given ¢ > 0, we compute

lim(log x)/x¢ = lim x /ex®! by L'Hopital’s rule

X-o X-m

=lim 1/ex® = 0.
X~ o

Then we set ¢ = b/a and compute

lim (log x)a/xb = lim [log x/x°? = 0,

X~ m . X-o
as desired.

Now we consider the exp function. Given ¢ > 0, we compute

lim e /x = 1im ce®/1 by L’Hopital’s rule

X-mo X-o

Then we set ¢ = a/b and compute

a
lim (%) /xb = lim[ecx/x]b = o,
X-m X-m

as desired.

Finally, we note that
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lim x?logx =lim (1/t*)log(1/t)

x- 04+ oo
t-m ta'
as desired ]
Example. Although
lim x+8in x
X~ o X

assumes the indeterminate form o/w, L'Hopital’s rule does not apply, since the function

(14cos x)/1 oscillates rather than approaches a limit as x -+ ». However,

x+sin x _ sin x
—x St

which approaches 1 because |sin x | /x < 1/x for x > 0.
This example shows that the converse of L'Hopital's rule is not true.
For this is a case where f(x)— and g(x)—>® as x—>®, and f£(x)/g(x)

approaches a limit, even though £'(x)/g'(x) does not approach a limit.



0 Notes on error estimates.

Each of the standard convergence tools for series brings
with it a method for estimating the error made in approximating
the limit by taking only finitely many terms of the series. We

treat this method for both the integral test and the ratio test.

Theorem 1. (Integral estimate.) Let £ be a positive
decreasing function defined for x = 1. Let a, = f(k). If the
integral f; f exists, then the series ¢ a, converges, and

(o]

[ f(x)dx < (] ak) < f f (x)dx.
N+1 N

k=N+1

The expression in the middle is of course the error made

in using the finite sum a; + ... + ay as an approximation to

the sum of the series.

is a
k =2

series of non-zero terms. Suppose o 1is a number less than

Theorem 2. (Ratio estimate.) Suppose that I a

1, and that

a /a < 0 for all k > N.
k+1° "k _—

Then

x©

a

k=N+1 K

1
< IaN+1l(i:E)‘

The expression on the left is again the error made in

' by the finite sum a, + ... + a_.

approximating the series I a 1 N

k



Exercises
1. Prove Theorem 1.
2. (a) Use Theorem 1 to estimate the error made in

approximating the number

1
a=2 —2-
n=1 n
by the finite sum 1 + 1/4 + 1/9 + 1/16 + 1/25. (In fact,
a = 12/6.)

(b) Given N, estimate the error made by using

as an approximation to a.

(c) Estimate the error made by using

N

1 1
z +
n=1 ;7 N+1

as an approximation to a.

(d) Estimate the error made in approximating a by the

sum 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/6.

3. Prove Theorem 2.

4. Estimate the error made in approximating the number

@

I .y n/2" by the finite sum 1/2 + 2/4 + 3/8 + 4/16 + 5/32.



The basic theorems on power series.

Whenever we have a series z un(x) of functions, there
are three fundamental questions we ask:

(1) Given the series Z un(x), for what values of x
does the series converge?

(2) Given Z un(x), if it converges to a function f(xi,
what properties does f(x) have? Specifically: Is £f contin-
uous? Can you calculate L? f(x) Dby integrating the series
term-by-term? Is £ differentiable, and can you calculate
f'(x) by differentiating the series term-by-term?

{3) Given a function f(x), under what conditions does
it equal such a series, where the functions un(x) are func-
tions of a particular type?

We shall answer these questions for a power series. This

is a series of the form:

. . n
Theorem 1. Given a power series ) a Xy exactly one of

-the following holds:

(a) The series converges only for x = 0.

(b) The series converges absolutely for all x.

(c) There is a number r > 0 such that the series

converges absolutely if |x| < r and diverges if |[x| > r.

(Nothing is said about what happens when x = fr.)

n

Proof. Step 1. We show that if the series |} a_x

converges for x = X # 0, then it converges(?bsolutely)for any

with [xl < Ixol' -



Fcr-this purpose, we write

‘anxn|= lanxg‘ IX/XOP cnlx/xoln ,

n .
where c == lanxol. Now the series j:lx/xoln converges,
because it is a geometric series of the form 2 yn with
[yl < 1. Furthermore, the sequence <y approaches 0
. n

as n-— <0, because the series ﬁ A Xq converges (by
hypothesis). We can choose N so that lanxg <1 for
n>N. Then lanxnfs lx/xoln for n» N. The comparison

thest then implies that the series i(anxnl converges.

Step 2. Let S be the set of all numbers x for
which the series i:anxn converges. If S consists of
0 alone, then (a) holds. Otherwise, there is at least
one number Xg different from O belonging to S. It
then follows that there is a positive number Xy belonging
to S; indeed, if Xy is any positi&e number such that.
x, < lxol , then_ St[anx?\ converges by Step 1, so that jlanx?
_converges and Xy belongs to S. We now consider two cases.
Case 1. The set S 1is bounded above. In this
case, we set r = sup S, and show that the series ﬁanxn
diverges 1if \x|> r and ccnverges (absolutely) if \x1<< r.
Divergence if |x| > r is clear. For suppose |x|>r
and the series ‘2 anxn converges. If we choose X, so

that r< x,< |x|, then Step 1 implies that the series

2
j:(a xni converges. Then the series S:a x2 converges,
n 2 n 2

so that x belongs to S, contradicting the fact that

2

r 1is an upper bound for S.
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Ccnvergence if |x| < r is also clear. If Ixl< r,

3
(otherwise [x| would be 'a smaliler upper bound on S than

we can choose an element x3 of S such that [x|< X

r). Step 1 then implies that zllanxn| cenverges.

Case 2. The set S 1is unbounded above. We show the
series S:anxn converges (absolutely) for all X. Given
X, choose an element X4 of S such that |[x|< X, This
we can do because S is unbounded above. Then‘i‘anxnl coverges,

by Step 1. 3

Definition . The number I constructed in (c) of the

preceding theorem is called the radius of convergence of

the series. 1In case (a) we say that r = 0; and in case (b},

we say that r = Q.

e e e -—

Theorem 2. Suppéée Z anxnb has radius of convergence

r> 0. (We allow r = =,) Let

® n
f(x) = 7§ a_x
n=0 =1

.

(a) £ 1is continuous for |x| < r.

(b) For |[x| < r, we have

b4 o xn+l

() For |[x| <r, we have

£1(x) = ) nanxn-l.

(d) The series in (b) and (c) have radii of convergence

precisely r.




Proof. 1In general, let

= . * 0 m
PL{x) = a, + a;x + +a x .
It is a polynomial of degree m, and it is the mEE partial sum
of our power series.
We are going to prove parts (a) and (b) for the fixed
point b in (-r,r). So as a preliminary, let us choose R

so that |[b] <R <r.

Step 1. Given ¢ >0, there is an integer N such that

the inéquality

[£(x) - pL(x)| < ¢

holds for all m >N and all x with |[x| <R.

The proof is easy. Since z |aan{ converges, we can
choose N sufficiently large that

la_R"| < e.
n=N+1 n

It follows that if |x| < R and m > N, we have

oo 0.
n N N
a_x < a_R < a_ R < €.

l n l n=£+l l n | n=§+l I n |

8

n=m+1l

Then for m > N and |x| <R,

f(x)-p_(x)] = a x| < la xn] < €.
| m | Izn=m+l n | zn=m+l a



Step 2. We show that f is continuous at b. This
proves (a).

Given € > 0, choose N as in Step 1. We have
[£(x) - py(x)| < e,
for any x in the interval [-R,R]. In particular,
’_f(b) = Py (D) | <.

Now we use continuity of the polynomial pN(x) to choose §

so that whenever |x-b| < 6§, then x is in [-R,R], and

Ipg(x) = py(d)] < €.

Adding these three inequalities and using the triangle inequality,

we see that whenever |x-b] < §, we have

|£(x) - £(b)| < 3e.

n+l

Step 3. We show that 2 anb /(n+l) converges to

b
[ f(x) dx. This proves (b).
0
Given € > 0, <choose N as in Step 1. Then whenever

m > N, the inequality

- < £(x) - pm(x) < g



holds for all x Ain the interval [-R,R]. The comparison

property of integrals tells us that
b .
lL (£(x)-p_(x)) dx| < e|b].
This says that

b
IJ £(x) dx - (a0b+alb2/2 +~~~+ambm+l/(m+l))| < elb]

0
for all m > N. It follows that anbn+l/(n+l) converges to
b
J f(x) dx.
0

Step 4. We show that the power series

Y na xi1

=1 n
has radius of convergence at least r.
For this purpose, it suffices to show that if ¢ is any
n-1

number with 0 <c <r, then } nac converges.

In fact, it suffices to show that }:nanpn converges, since multiplying
the series by c¢ does not affect convergence. This is what we shall show.
First, choose d such that c< d < r. Then write the general temm

of our series in the form
n. n(d) *

We note that the series 2 andn converges because d < r. It follows that
the nth term ahgg approaches 0 as n becomes large. Choose N



sufficiently large that landnl< 1 for n> N. Then for n> N, we have

n c,\n
na c’ § n(y

1 g

converges by the ratio test, since 0< ¢/d< 1. Therefore the series

Now the series

2 nancn converges, by the comparison test. -

Step 5. We prove part (c). Let

g (x)

for |x| < r. Part (b) of the theorem tells us that for

|x] < r, we have

I
~1
o1}
b

X @ n
f g(t) dt
0 n=1

= £(x) - ag-

Part (a) of the theorem tells us that g({x) is continuous for

|x] < r. Then the first fundamental theorem of calculus applies;

we conclude that

g(x) = £'(x),

which is what we wanted to prove.
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Step 6. We prove part (d). If the series Z.anxn+l/(n+1)

had radius of convergence q > r, then so would the differenti-

ated series |} anxn, by Step 4. But it does not. Similarly,

if the series Z nanxn'l had radius of convergence q > r, then
. " But it does not. a

so would the integrated series ) a x

Remark. It follows readily that all the results of Theorem

2 hold for general power series of the form

© n e

£(x) =} a(x-a)".

n=0
There is a number r (which may be 0 or =) such that the
series converges absolutely for |x-a[ < r and diverges>for
|x-a] > r. Furthermcre for |x-a| < r, one has:

(a) £f(x) 1is continuous.

X ™ (x-a)n+1
(b) fa f(t? d: = 2n=0 a Xz3l
() £'(x) =]  na (x-a)™7L.

n=1 .
The proof is immediate; one merely substitutes (x-a) for x

in the theorem.

Here is a theorem proving the uniqueness of a power

series representation:

Theorem 3. Suppose

£(x) =} a (x-a)® = [ b (x-a)"

n=0

on some open interval I containing a. Then for all k,

, (k)
= b =—-———--f (a) .

B k X1
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Proof. We apply the preceding theorem. We write
£(x) =} an(x—a)n.

Differentiating, we have

2 n-1

£'(x) = nan(x-a) .

n=1
Applying the theorem once again, we have

£"(x) =} n(n-l)an(x~a)n-2.

n=2

And so on. Differentiating k times, we have

k) (%) = § n(n-1)++ (n-k+l)a_x""%.

n=k

When we evaluate at x = 0, all the terms vanish except for the

first term. Thus
£X) (%) = kla,

as desired. The same argument applies to compute bk' a

Definition. If £(x) equals a power series ) an(x-a)n

in some open interval containing a, we say f is analytic
(or sometimes "real anélytic“) near a. By the preceding
theorem, this power series is uniquely determined by £; its

partial sums must be the Taylor polynomials of f at a. For



this reason, the series is sometimes called the Taylor series

of £ at a.

Corollary 4. The function £(x) is analytic near a

if and only if both the following hold:

(l) All derivatives of f exist in an open interval

about a.

(2) The error term E (x) in Taylor's formula

approaches 0 as n —> =<, for each x 1in that interval.

Remark. We know that it is possible for us to have

£(x) =} My (%)
n=0
for all x in an interval |[c¢,d], where each function
un(x) is .continuous, without it following that £(x) 1is
continuous, or that its integral can be cbtained by
integrating the series term-by-term. However, this unpleasant
situation does not occur if the analogue of the statement in
of the proof of Theorem 2

Step lApolds. This fact leads to the following definition.

Definition. The series [ u_(x) is said to converge

uniformly to £(x) on the interval [c,d] if given € > O,

there is an N such that

m

[£x) -1 w (x| <e
n=0

for all m> N and all x in [e,d].
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Theorem 5. The series | un(x) converges uniformly

on [c,d] if there is a convergent series ! M of con-

stants such that }un(x)[ <M for all x in [e,d].

(The proof is just like that of Step 1. There the

series of constants was the series | laanQ.

Under the hypothesis of uniform convergence, the

analogues of (a) and (b) of Theorem 2 hold:

Theorem 6 . Suppose Z un(x) converges uniformly to

£(x) on [c,d]. If the functions u_(x) are continuous,

so is £f(x), and furthermore the series

® X
) (J u, () dt)
n=90 c
X
converges uniformlv to J f(t)dt on [c,d].
c
The proof is just like the ones given in Steps 2 and 3.

Remark. Part (c) of the theorem, about differentiating
a power series term-by-term, does not carry over to more general
uniformly convergent series. For instance, the series

)

) (sin nx)/n>
n=1

converges uniformly on anyvinterval,vb§ comparison.with the
series of constants Z‘l/nz, but the differentiated series

Z (cos nx)/n does not even converge at x = O. If however the
differentiated series does converge uniformly on [c,d], then

£'(x) does exist and equals this differentiated series. The

-proof is similar to that of (c).



Exercises
1. Prove Theorem 3.
2. Prove Theorem 4.
3. Prove the following theorem about term-by-term

differentiation:

Suppose that the functions uﬁ(x) are continuous, that

[++]

the series 2 L uﬁ(x) converges uniformly on |[c,d], and that
n=
Em . uh(x) converges for at least one x in [c,d]. Then:
n=
(a) Xw . Wy (%) ‘converges uniformly on [c,d], say to
. n:
£f(x).

(b) f£'(x) exists and equals B (x).

[Hint: Integrate the series |} ué(x).]



A family of non-analytic functions.

Let m =2 0 be any nonnegative integer. Define

2
re-l/x

X

£.(x) = ﬁ

g 0 for x = 0.

We will show that each of the functions fm(x) has continuous
derivatives of all orders, for all x. We also show that none
of them is analytic near 0; that is, none of them equéls a
power series of the form I anxn. in an interval about .O.

Theorem 1. (a) The function £.(¥) 1is continuous for

all x.

(b) Furthermore, fé(x) exists for all x and satis-

fies the equation

fé(x) = -mfm+l(x) + 2fm+3(x).

Proof. (a) The general theorem about composites of

continuous functions shows that fm(x) is continuous when

X # 0. To prove continuity at x = 0, we must show that

e-l/xz‘
lim——r= 0.
x+0 X

The substitution yu = l/x2 simplifies the calculation. We have

2
~1/x -y m/2
- _ e — u
lim lim v lim .
x-+0 ™" U l/um 2 U eH



This limit is zero because e" approaches infinity faster
than any power of u, as py —> o,

(b) We check differentiability. If x # 0, we calculate

directly:

2 2 2

' - 1 -1/x - -m -1/x 1 -1/x“[ 2

Ea(x) D{—m e ] = T © tRe ‘“3‘)
X X X X

= -mfm+l(x) + me X).

+3(

To show the derivative exists at x 0, we apply the defini-

tion of the derivative:

fm(0+h) - fm(O)

fé(O) lim

h+0 h
-1/h2 32
~ 11 (e L/n /A - 0 Y - 1/h
= lim h = lim -—-——-;—i-—-
h-+0 h+0 h"

This limit 1is zero, by part (a). Therefore, the derivative

exists at x = 0 and equals 0. Thus the formula

fé(x) = -mfm+l(x) + 2fm+3(x)

holds when x = 0.

Theorem 2. The function fm(x) has continuous deriva-

tives of all orders, for all x, but £ (x) does not equal

a power series I anxn on any interval about 0.
Proof. We know that each function £,(x) is differen-

tiable, for all x. The equation



f&(x) = —mfm+l(x) + 2fm+3(x)

éhows us that fé(x) is differentiable, for each x. This is
the same as saying that derivative f&(x) exists for all x.

In general, we proceed by induction. Suppose we are
given that the nEE derivative of each function fm(x)
exists, for all =x. Then the preceding equation shows that the
nEE derivative of the function fé(x) also exists, for all x.
This is the same as sayiﬁg that the (n+l)§5 derivative of
fm(x) exists.

It follows that the nEE derivative of fm(x) exists,
for all x and all n. And of course it is continuous because
the fn+l)§£ derivative exists.

Now we suppose fm(x) = I anxn on some non-trivial
interval about x = 0, and derive a contradiction. If fm(x)
equals this power series, then the coefficients a, must satis-—

fy the equations

(n)
. =fm (0)

n n!

for all’ n. We know that fm(x) vanishes when x = 0. Using

the equation

m+3(x)

fi(x) = -mfm+l(x) +.2f

repeatedly, we see that all the derivatives of fm(x) also

vanish at x = 0. Therefore a, = 0 for all n, so fm(x)



is identically zero in some interval about x = 0. But this
is not true; indeed the function fm(x) vanishes only for

x = 0.
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FOURIER SERIES

let us summarize what we know about power series:

I CONVERGENCE Given a power séries

[ e} k
Z A X

k=0

there is a number r with 0 r £o3 , such that the series converges

abtsolutely for [x]<:r ard diverges for [x|»r; we call r the radius of convergence.

I7 UNIQUENESS If
o

B k
f(x) = jakzo a, x

for x 1n some non-trivial interval about O, then

a, = £(%) (0 A

I11 TAYLOR SERIES If f(k)(O) exists for all %k, then we can

write down the series

© k . (x)
zkzo a X, where a, = f (0)/k!

This: series is called the Taylor series of f. It may not converge to f,

however; it will do so only if the error term EF(X) gces to 0 as n

approaches ©3 . In this case, f 1s said to be analytic.

Iv DIFFERENTIATION AND INTEGRATION If £(x) ecuals a power series
in some non-trivial interval about O, then f£'(x) ard Iz§f(t)dt can be
computed by differentiating and integrating the series term-by-term. These

new series have the same radius of convergence as the original series,

V  AFPROXIMATION Among all polynomials of degree n, the Taylor
polynomial of f is the one that equals f at 0, and whose first n
Cerivatives €gjual those of f at 0. If f 1is analytic, it approximates £

very well for x near 0O (and less well as X  becomes large).



Ncw we considey series whose terms are not powers of x, but are
of- the form sin nx ard coxmx, for n ard m positive integers. One
motivation for considering such functions is that they are periodic, so they
would be natural functions to consider if one wished to represent a periodic

function by an infinite series. (Such functions are often called wave functions,

and are important in the applications.)

3¢ let us consider a general series of the form

%)
L + z + in! .
53 et (ak cos kx bk sinkx)

Such a series is called a trigonometric series. (The factor % 1is inserted

for later convenience.) We will consider the analogues of statements T - V

for this new series.
I CCNVERGENCE

Arout this there is little to say. Trigonometric series have no particularly
nice convergence properties. For instance, the series 2 (cos nx)/n converges
at. x =1V and fails to converge at =x = 0. What happens in between

is anybody's guess!
I1 UNTIQUENESS

Here there is a theorem. But since we don't know the series converges

on a non-trivial interval, we must assume 1it.

Theorem 1. If the trigonometric series

L8]
a + z\ (a_cosnx + b sinnx)
0 n=1 ""n n

N

convergas uniformly to a function f(x) on the interval [-7,T], then

'
as = (/w)f, £(x)ex,

i
a, = (/1) _,Cﬁ £f(x) cosnx dx, and
T ,
= 1 f(x) sinnxdx .
b (1/n )j,Tr (x) X
(since cos nx = 1 if n = 0, the first of these equations is redundant.)

Proof. Since the series converges uniformly on [-T,T ], it will still

converge uniformly if we multiply through by cosmx or sinmx. Then we



can compute the integrals of f(x) or f£(x)cosmx or f(x)sinmx by
integrating the appropriate series term-by-term. It happens that if we
integrate from ~W to T, all but one of. the terms equal 0! This follows

from the integration formulas

g1

fcosnxcosmxdx = 0 if n#m
S\ P . .

S sinnx sinmx dx = 0O if n#m
At

S“ sinnx cosmx dx = O always

jf(sirlnx dx = 0

T

§~ cos nxdx = 0.

-1

Finally, the fact that the integrals from -T to W of cosznx ar:id

sin2nx equal T gives us the factor of (1/9r) in the ahove equations. -
11T FOURIER SERIES

Suppose f is an integrable function defined on [-F%,W ]. Then we

can write down the trigonometric series
Wi §
L .
a + T a cosnx + b sinnx
0 n=1 ( n Ii )

where the coefficients are given by the integral formulas in the statement of

Theorem 1. This series is then called the Fourier series of f£. Just as was

the case with the Taylor series of a function, however, the series may not
converge to  f.

The remarkabie fact about Fourier series is that they converge under very
weak assumptions about the function £, in contrast to the situation for Taylor
series; where the function must have derivatives of all orders and, in addition,
be analytic. We shall state without proof several theorems coneerning
the convergence of Fourier series. 1In order to do so, we must make the followihg. -
definition:

Suppose that £ 1is continuous on an open interval about p, except

possibly at the point p itself. If both the limits

lim £(x) ard lim f(x)
X—2pt X3P~

exist Pand are finite), we say that f has at most a jump discontipuity:at p.
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Theorem 2. Suppose f(x) is continuous on the interval [W,TW ],
and that f' is continucus on this interval except for finitely many jump
discontinuities. Suppose also that £{-T) = £(7 ). Then the Fourier series

of f cenverges uniformly to f on the interval [, I ].

Remark. Ncte that if the Fourier series of f 1is to converge
to f on [-0, W], then it is necessary that f£f(1r ) = £(-T), since all
the functions involved have this property. Note further that if the
convergence is to be uniform, it is necessary that f be continuous, since
the limit of a uniformly convergent series of continuous functions is continuous.
What is remarkable is the fact that you need to assume very little more
than these two necessary conditions in order to ensure that the series converges

uniformly. The situation is very different from that for Taylor series!

New of course if f is not continuous, then there is no hope of
getting the Fourier series of f to converge uniformly. Even in this case,
however, the series will try as hard as it can to converge! That is the

substance of the following theorem:

Theorem 3. Suppose that f and f' are continucus on [T, T ] except
for finitely many jump discontinuities. Then the Fourier series of f
converges to f at each point of (<7,W) at which f 1is continuous;
and the convergence is uniform on any closed interval in (-7, 7 ) on which
f 1is continuous.

At every point p of (-W,W ), the series converges to the number

Lo o1 ,
s Hm fx) + _Lim £(x)).

And at T and-T, it'converges to

L( 11 ] %)).
z(X};n_nv*f(X) * g £(x))

We can understand better what happens at T and -7 1if we note the
following: Given £(x), let us look at its values on the half-open interval
[T, %), and extend f to the entire real line by defining

glx + 2nify) = £(x)
for all x ard all n. The function g ic called the periodic extension of f£.
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Now if the Fourier series of £ converges to f for some x in
[-m,7), it will automatically converge to the periodic extension g of f
et any point of the form X + 2nM. In some sense, then, it is more natural
to deal with functions g(x) that are of period 271 and defined on the
ertire real line. It now becomes clear why the Fourier series of f may
not converge to f at T or -7 {ev&n?%zf, wkick is only defined on
[-r, M ], is continuous ttere). For the periodic extension g~ of f will not
be continuous at Tl unless the right and left hand limits of g at T equal
the value of g at Tf .

Restated in these terms, Theorem 3 becomes the following:

Theorem 4. Iet g{x) be a function of period 27y, defined for all x.
Suppose g and g' are continuous on [, W ] except fcr finitely many - jump
discontinuities. Then the Fourier series of g huas the following properties:

(i) 7Tt converges to g(x) whenever g 1is continuous at x.

(ii) It converges uniformly to g on each closed interval on which g
is continuous.

(iii) It converges to the average of the right and left hand limits

of g at each point where g is discontinuous.

To illustrate these theorems, we compute some examples. Before doing so,
let us recall that we call f(x) ar even function if f£(x) = £f(-x) fcr all  x,
and we call it an odd function if f(x) = -f£(-x) for all x. The integral
of an odd functiol from -a to a is always O, because cancellation occurs.

The following is an immediate consequence:

Theorem 5. If f£(x) is an even function, then all the terms h}lsinnx
are missing from its Fourier series. If f(x) 1is odd, then all the terms

%ao and a, cosnx are missing from its Fourier series.

Proof. If f 1is an even function, then f(x) sinnx 1is odd, while if

f 1is odd, tren f(x)cosnx 1is odd. [J
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Example 1. Consider the function
f(x) = XU +x fcr - % x%0,
fix) = 4TW-x fcr 08 x =T .

Its graph is pictured; it is called a triangular wave. (We have actually

pictured the periodic extension of f£.)

This function is even, so only ¢eosine terms appear in its Fourier series.

Direct computation of the coefficients a by integration, gives us the series

-:{-?_— [cost.- (1/9)cos 3x + (1/25)cos5x  + ] .

The firsttwopartial sums of this series, 1 ar:d Sy, are picturedabove. Note
how closely they approximate the function.

This function satisfies the hypotheses of Theorem 2; this theorem predicts
that the series will converge uniformly -(since f 1is continuous and £(-) = £(T )
and f' has only jump discontinuities). And indeed, it does converge uniformly,

by comparison with the series il/nz.

Eample 2. Ccnsider the function f£(x) =x for -T2 x<T . ILet g

ke its periodic extension. The graph of g 1is pictured below.



This is a case where the function f is continuous on [-# ,®7), but its

periodic extension has a jump at T . Thus we do not expect the Fourier series

of £ tc converge to £ at T or -II, but rather to the average of the

left and right hand limits, which is 0. And this is exactly what happens.
Since f 1is an odd function, no cosine terms appear in its Fourier series.

Direct computation gives us the series

2[sinx - (1/2)sin2x + (1/3)sin3x - (1/4)sind4dx + ]

The first three partial sums Sy Sys and s; are pictured in the following
figure. Note that the convergence is not nearly as rapid as in the preceding
example, and that it gets much worse as one approaches W , where g fails to

be continuous.
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Example 3. Finally, let us ccnsider the following function, which is
called the square wave function:
f(x) = 1if 0< x<TI
£(x) -1 if -w<x <0 .

" This function is also odd; its Fourier series is the series

(4/77) Isinx + (1/3)sin3x + (1/5)sin5x -+ j

The first three partial sums are sketched. Note that the convergence becomes

worse as one approaches the discontinuities (of the periodic extension of f).

IV DIFFERENTTATION AND INTEGRATION

We know that in general a uniformly convergent series can be integrated
term by term. A much stronger result holds for Fourier series; in fact, one

dces not even need to assume that the series converges!

Theorem 6. Suppose that f is continuous on [T, T ] except for
finitely many jump discontinuities. Although the Fourier series of f need
not converge to £ , it is still true that if you integrate each term of the
series from a tc b (where & and b are points of [-T,T ]), then the:

result??fy series will converge to the number

§: f(x) dx.

There is no similar theorem about differentiating a Fourier series.
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V  APPROXIMATION

Just as was the case for an analytic function and its Taylor series, the
Fourier series of a function f will, under quite weak conditions, approximate
the function. The difference lies in how one measures the closeness of the

approximation. Rather than measuring the actual difference between the values
of the function and of the partial sums of the series, we measure the average
value, in some sense, of this difference. Specifically, we make the following
definition:

Suppose that f(x) 1is a given function on the interval {a,b]. Ard

suppose we seek to approximate f by another function g(x) on this interval.

In this case, we call the number
b
, 2
Bfg) = | (£60) - g(x)? ax

the mean square error in this approximation.

One has the following theorem:

Theorem 7. Let £(x) be continuous, except for finitely many jump
discontinuities, on [T, ]. Among all"trigonometric polynomials"of the
form

n
— ]/ * » .
hn(x) = syt z 11 (ai cosix + bi sinix) ,

the one for which the mean square error E(f,hn) is a minimum is the one for
which the ccefficients are the Fourier .coefficients of f.

Furthermore, in this situation, the mean square error goes to zero as

n agproaches & ..

Wihat this last sentence says is that even though the Fourier series of £

nay not converge to g in the ordinary sense, it will converge "in the mean."
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GENERALZIZATTONS

It is remarkable how different the theorems concerning the convergence of
power series and the convergence of Fourier series are. It is then natural to
ask why the functions sinnx and ccsnx play such a special role. Perhaps
it is because they are periodic. But that is not the case; their periodicity
is important only if one wishes to represent periodic functions. If the
functions one wishes to represent are not periodic, there are many other systems
of functions that will do as well.

The crucial property we needed was that when we multiplied two of the
functions sinnx and cosnx together and integrated from ~d to W,

we got zero!

For example, it is not at all hard to find a sequence of functions

Po(x)s Py(x), Po(x),.. /P (X)) ...
such that Pn(x) is a polynomial of degree n, for each n, and such that

5: P_(x)P_(x)dx =0

whenever n # m. These polynomials are uniquely determined up to a constant

factor; it is traditional to multiply each by an appropriate constant so that

1
f P (x) P (x)dx = 1.

These polynomials are called the Legendre polynomials. It follows just as in the

proof of Theorem 1 that if a series of the form

Q
Zin:o %1Pn(x)

converges uniformly to a function f{x) on the interval [-1,1], then the

coefficients a are given by the equation

1
a :j_l f(x) Pn(x)dx.

For any integrable function f{x), the series for which the coefficients are given

by this formula is called the Fourier-Legendre series of f. There are theorems

about these series that are directly analogous to those about Fourier series

mentioned akove. Their uses in the applications of mathematics are abundant.
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