How Tall Can a Tree Grow?

Figure by MIT OCW.

Column \mathcal{B} suckling: \mathfrak{A} t the Boston \mathcal{N} Nature Center you can learn 6 y doing. \mathcal{A} demonstration shows how different shape cylinders buckle.

Compress the column in the demonstration. Initially, the column stays straight. At some critical load, the column bows out, or "buckles."

$$
\mathbf{d}=\mathbf{C}_{5} \mathbf{h}^{3 / 2}
$$

$$
\text { Equation \# } 2
$$

E: is the stiffness of the material (ho much it deforms for a given load) and is called "Young's Modulus."
C_{4} is a constant

The demonstration has columns of different diameters (d) and different heights (h).

Check the formula by measuring the critical buckling load for several different columns. If you double the diameter, the buckling load increases by a factor of 2^{4} or 16. If you double the height of the column, the buckling load decreases $6 y$ a factor of $2^{2}=4$.

Tree height is controlled by column buckling.

As the tree gets taller, its weight increases.
At some point the trunk will buckle under its own weight. This happens when the weight (equation \# 1) equals the buckling load (equation \#2)

$$
\mathrm{d}=\mathrm{C}_{1} \mathrm{~h}^{3 / 2}
$$

Rearranging:

$$
\mathrm{d}=\mathrm{C} \mathrm{ch}^{3} \mathrm{~m}^{2}
$$

For different types of trees, $\mathcal{G} / \mathcal{E}$ is a constant. (See page on wood structure and properties.)

Combining

Figure by MIT OCW. After Bonner and McMahon (1983).

On a log-log plot, $d=C_{5} \pi^{(3 / 2)}$ is a straight line with a slope of $3 / 2$.

From Bonner, I.T. and Mc Mafion, \mathcal{T}. A. (1983). On S ize and Life. Scientific American Books.

We fave

$$
\mathbf{d}=\mathrm{C}_{5} \mathbf{h}^{3 / 2}
$$

The American Forestry Association records the diameters and heights of the tallest individual trees of different types in the $\mathcal{N a t i o n a l ~ R e g i s t e r ~ o f ~ B i g ~ T r e e s . ~ E a c h ~ p o i n t ~ o n ~}$ the plot (see above) corresponds to one individual record tree of a particular type.

For record trees:
$\mathbf{d}=\mathbf{C}_{5} \mathbf{h}^{3 / 2}$

Their height is limited by column buckling.

What is the tallest tree in the world?

The Mendocino Tree is a 367.5 feet figh redwood and is
 600-800 years old. It is in the remote Montgomery Woods State Reserve in California. This tree would be almost half the height of the $\mathcal{H a n c o c k}$ Tower in Boston.

