FERROMAGNETIC SEMICONDUCTORS FOR SPINTRONIC AND MAGNETOELECTRONIC DEVICES

Vikram Sivakumar

Introduction and Overview

- Moore's Law of microelectronics
 - Reaching the scale-down limit
- Suggestions for future:
 - Bottom-up approach to fabrication
 - Integration of function in devices
 - Change in characteristics of information carrier
 - Bioelectronics, polymer electronics, molecular electronics, spintronics

What is spintronics?

- Currently: Processing by charge, storage by spin, coding and transmission using photons
- Spintronics \rightarrow Information Storage + Processing
- Spin: additional degree of freedom
- Mott: Spin-polarized currents in ferromagnetic metals
- 10X difference between majority and minorityspin carrier currents in Fe and Co, because:
 - Splitting into majority and minority spin bands
 - Spin-dependent cross-section of impurities
- Ferromagnetic proximity effect

Spintronic devices

- First spintronic device: spin valve based on GMR (1988)
- Requirements for spintronics:
 - Efficient electrical injection of spin-polarized carriers
 - Efficient transmission during transport of carriers through semiconductor
 - Capability to detect or collect spin-polarized carriers
 - Control and manipulation of transport via external means (e.g. biasing of a gate contact on a transistor)

Materials with a spin!

- Ferromagnetic semiconductors
 - Combined semiconducting and magnetic properties for multiple functionalities
 - Easy growth of ferromagnet-semiconductor nanostructures
 - Easy spin injection: e.g. spin transistor
- Half-metallic ferromagnets: 100% spin polarization
 - Two spin channels: one metallic, other with gap at fermi level
 - Examples: Extreme substitution of V, Cr and Mn into GaAs, InAs, GaSb, InSb, GaP and InP

Introduction to ferromagnetic semiconductors

- 1970s: Eu and Cr chalcogenides
 - Rock salt type EuO and EuS
 - Spinel type CdCr₂S₄ and CdCr₂Se₄
- Diluted magnetic semiconductors
 - Spins from 3d or 4f e⁻s of transition metal
 - Examples: Cd_{1-x}Co_xSe, Ga_{1-x}Mn_xAs and Si:Er
 - II-VI compounds: tough to get a good number of mobile carriers by doping
 - GaMnAs: canonical DMS; $T_c = 30-170 \text{ K}$
 - InMnAs: $T_c=35$ K
 - Theoretical prediction of $T_c>R.T.$ realized in Mndoped ZnO and GaN, and in Co-doped TiO₂ and ZnO
 - Manganites & Mn-doped IV semiconductors

Theory of Magnetism in ferromagnetic semiconductors

- Zener model for ferromagnetism
 - Ferromagnetic metals: Parallel coupling between localized spins (Heisenberg Exchange)
 - Quantum-mechanical treatment (RKKY):
 - Sign of interaction depends on distance between localized spins
 - Indirect exchange mechanism via charge carriers
 - DMS: Holes mediate between ferromagnetically coupled spins
 - Mn-doped III-V compounds: holes due to Mn
 - Mn-diluted II-VI compounds: doped with N

Applicability of the Zener Model

- Apply to wide-band gap semiconductors:
 - Short bond lengths => strong coupling between holes (anions) & spins (cations) => Large spontaneous moment
 - Many: $T_c > R.T$. but much lower moment than predicted
- Fails when substitution exceeds solubility limit:
 - Ferrimagnetic or ferromagnetic precipitates => unaccounted magnetism !

Processing of ferromagnetic semiconductors

- 1970s: II-VI by variant of Bridgeman
 =>spin disorder or AF coupling
- Non-equilibrium processing
 - MBE for low-T growth of Mn-doped III-V
 - (For single phase material at high Mn-doping, which is not possible at equilibrium)
 - PLD for oxides (doped ZnO, SnO, TiO₂)

Characterization Techniques: Spin Manipulation

- GaMnAs: holes contribute to magnetism; so processes that change carrier concentration can be used for spin manipulation
 - Femtosecond laser pulses
 - Spin alignment in polarized light; but precession leads
 to breakup; however fast laser pulses can maintain
 spin coherence
 - Electrical spin injection
 - Quantum well structure with P-type ferromagnetic semiconductor on non-magnetic semiconductor: holes injected are spin-polarized => polarized light

Characterization Techniques (Contd.)

- Magneto-transport of charge carriers
 - Hall Effect
 - <u>Anomalous Hall effect</u> due to spin-orbit coupling; electrical means of establishing weak magnetism in magnetic semiconductors
 - Magnetoresistance

Additional term in Kohlers rule from spontaneous MR (AMR): $\Delta \rho / \rho = a (H/\rho)^2 + b (M/\rho)^2$ Functional dependence of AMR: $\Delta \rho (H) / \rho_{av} = \Delta \rho / \rho_{av} (\cos^2 \theta - 1/3)$

Example of a Hall effect measurement

Image removed due to copyright considerations. See reference below.

Back

Hall Resistivity versus applied field for $Ti_{1-x}Co_xO_{2-\delta}$ (The captions represent electron densities) [H. Toyosaki, T. Fukumura, et.al., Nature Materials Vol. 3 (2004)]

Potential Applications

Spin valves and GMR devices

Image removed due to copyright considerations. See reference below.

Applications: Magnetic field sensors, read heads, galvanic isolators and magnetic random access memory [S.A. Wolf, D.D.Awschalom, et. al. Science, Vol. 294., 1488 (2001)]

Magnetic Tunnel Junctions

Image removed due to copyright considerations. See reference below.

Non-volatile memory applications, instant turn-on computers [S.A. Wolf, D.D.Awschalom, et. al. Science, Vol. 294., 1488 (2001)]

• Spin LEDs

- Spin polarized charge carriers \rightarrow Polarized light
- No need for polarizing filters \rightarrow Increase of efficiency
- Spin FETs
 - Source and drain from ferromagnetic metals
 - Channel from semiconducting material
 - Additional gating action via magnetic field
 - Non-volatile memory due to spin polarization
 - Conductivity mismatch minimized by use of ferromagnetic semiconductor

THANK YOU !