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Solutions 

9.1 a) For each surface of the film, Hmagstat = - (1/2)M = -Ms cosθ, so Hmagstat = -M. 

fmagstat = -µo Ms . Hmagstat 

f = -µo MsH cosθ + (µo/2) Ms2 cos2θ 

∂f/∂θ  = 0 gives: H = Ms cosθ =  M⊥ (after division by sinθ, which is zero 

only at and above saturation). Thus: 

H/Ms = M⊥ /Ms = m 

The system saturates when H = Ms =1.27 MA/m or when B = Bs = 1.6T 

b) [111] is the easy axis, so the only anisotropy is shape. Answer is same as a) 

but Ha = Hmagstat = -NM with N = 1/3 instead of 1. m = 3H/Ms 

Saturation is achieved at (1/3) µoMs ≈ 0.2T. 

9.2 Putting m = 1 in Eq. 9.13 gives sin 2θo = 0 which can only be satisfied for θo = 0 or 

π/2. So the m(H) curves in Fig. 9.3 never reach m = 1 except for the two limiting cases, 

for θo = 0 or π/2. 

9.3 The energy density, f = K1 sin2θ cos2θ - MsH cosθ , is plotted below. f is 

minimized for the equation of motion: (m - 2m3) - h = 0, where h = MsH/2K1 . This 

cubic equation may have up to three different solutions. The physically meaningful 

one(s) can be discerned by considering the energy as a function of θ. 

The equilibrium orientation θο decreases toward zero, i.e. m = cosθ increases as 

H increases. At a field h ≈ 0.25, the energy minimum near θ = 1.2 vanishes and the 

magnetization may jump abruptly to θ = 0, m = 1. 

The calculated form of m versus h is shown. The discontinuous change in m is a 

first order transition; it corresponds to what is called a switching field. It can be 
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determined from the derivatives of the equation of motion, either ∂h/∂m = 0 or ∂m/∂h = 

∞. Thus, the critical magnetiztion at switching is given by: 1 - 6mc2 = 0. Thus  mc  = 

0.408... (or θc = 66o) which occurs for hc = 2/(3√ 6) = 0.272... 

Fig. for Sol. 9.3.  Left, normalized energy density as a function of θ (radians)for 

different values of reduced field, h = H/Ha. Shift in equilibrium orientation with h is 

indicated. Right, calculated m-h behavior: m increases with increasing h then at mc = 

0.408, jumps to m = 1.0. The dashed line in the m-h curve shows the continuation of the 

mathematical solution. Note that the initial slope ∂m/∂h)o = 1 or ∂M/∂H = Ms/Ha gives 

the value for the anisotropy field Ha. Thus, the value of K1 can be determined by 

measuring m(h) and using either the initial slope or the critical field hc. 

Prob. 9.3. Left, normalized energy density as a function of θ (radians) for different values 
of reduced field, h = H/H1. Shift in equilibrium orientation with h is indicated. Right, 
calculated m-h behavior: m increases with increasing h then jumps to m = 1.0 at mc = 
0.408. 
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9.4  The energy density is f = -MsBo cosθ + K1 cos22θ + B1exx (cos2θ - υ sin2θ) 

∂f/ ∂θ = 0 gives m[8K1 (2m2 - 1) + 2B1 exx (1 + υ)] = Ms Bo where m = cosθ and 1-m2 = 

sin2θ. For exx = 0 this gives the result sketched as the solid line: mr = 1/√ 2, saturation 

(m = 1) occurs at H = (8K1/µ Ms) = Ha.o

For B1exx > 0, mr < 1/√ 2 

B1exx < 0, mr > 1/√ 2 , 

and Ha = [8K1 + 2 B1exx (1 + υ)]/(µ Ms).o

Thus, saturation occurs at higher fields 

for B1exx > 0 and lower fields for 

B1exx < 0. 

9.5. a) From Eq. 6.6, setting θ = 90o, we have 

f = Kusin2φ + (K1/4)sin22φ. − µο Ms Ηsinφ. 

b) Energy surfaces: 
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c) Zero torque gives 2K sinφ cosφ + K1 sin2φ cos2φ = µο Ms Η cosφ. Divide by cosu

φ which is zero only at and above saturation. The parameter of interest is the component 

of magnetization along the field direction, sinφ, which we define as m. The equation of 

motion is then expressed: 
2K m  + 2K  m  (1 − 2m2 ) = µ M  H  u 1 o s 

d) Numerical solutions are shown at the 

right for three values of the ratio of uniaxial 

to cubic anisotropy constants, K /K1 = 2, 5u

and 8. K1 = 104 J/m3 and the field scale is 

µoH (T). Note that for Ku/K1 = 5, the 

infinite slope point occurs at m = 1. For 

smaller Ku, the magnetization shows a 

discontinuity as was found in Prob. 9.3. 

For larger K , the m-h curve approaches au

linear form typical of pure uniaxial, hard-

axis magnetization. 

9.7 Coercivity goes inversely as permeability. More exactly Hc is proportional to (Ku + 

(3/2)λs σ)/µοMs. In amorphous materials there is no magnetocrystalline anisotropy so K 

is very small. The coercivity then vanishes or goes through a minimum when 

magnetostriction vanishes. 

9.9. g = 2.11. 




