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6.1

Solutions Chapter 6 

a) α1 = sin θ cos φ , α12 = sin2θ cos2 φ


α2 = sin θ sin φ, α22 = sin2 θ sin2 φ


α3 = cos θ, α32 = cos2 θ


2α12 + α22 + α3  =


 sin2 θ (cos2 φ + sin2 φ) + cos2 θ = 1


 b) α12α22 + α22α32 + α32α12 = sin4 θ cos2 φ sin2 φ

 + sin2 θ sin2 φ cos2 θ + sin2 θ cos2 φ cos2 θ


 = sin4 θ cos2 φ sin2 φ + sin2 θ cos2 θ QED


6.2 From Eq. 6.6 

ƒ100 = K0, 

ƒ110 = K0 + K1 /4, and 

ƒ111 = K0 + K1/3 + K2/27. 

For Fe: From Fig. 6.1 From Eq. 6.6 

ƒ111 – ƒ100 ≈ 1.6 × 104 J/m3 = K1/3 + K2/27 

ƒ110 – ƒ100 ≈ 1.2 × 104 J/m3 = K1/4 

The second equation gives K1 = 4.8 × 104 J/m3 and using this in the first gives K2 ≈ 0, in fair 

agreement with the tabulated values, K1 = 4.8 × 104 J/m3 , K2 = - 1 × 104 J/m3. 
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For Ni From Fig. 6.1 From Eq. 6.6 

ƒ100 – ƒ111 ≈ 2.2 × 103 J/m3  = - K1/3 – K2/27 

ƒ110 – ƒ111 ≈ 1.0 × 103 J/m3  = - K1/12 – K2/27 

Subtracting these two equations gives K1 = -4.8 × 103 J/m3 and, thus, K2 ≈ - 1.6 × 103 

J/m3. These values compare well with the tabulated values, K1 = -4.5 × 103 and K2 = -2.3 

× 103 J/m3. Clearly, there is significant opportunity for error in estimating the areas in 

Fig. 6.1 between the magnetization curves taken in different directions. 

6.3 The energy gradient of Eq. 6.6 for small θ is given by K1θ2 + (K1 + K2) sin22φθ2/4. 

For Ni, both K1 and K2 are negative and K1 ≈ K2. Thus the energy gradient is given by -

2|K1| θ [1 + 3/2 θ2 sin2 2 φ] which is steeper for φ = 45o. Thus M rotates toward the 

<111> directions, not <110>. 

6.4 	ƒa 100 = K0 + K1 <sin4 θ cos2 φ sin2 φ + sin2 θ cos2 θ> 

for small θ we get ƒa 100 ≈ Ko + K1 <θ>2 and 

ƒa 110 = K0 + K1 cos2 2θ ≈ K0 + K1 <1 - (2δθ)2/2 ...>2 

ƒa 110 - ƒa 100= K1 (<1-(2δθ)2/2 ...>2 - < δθ2>) = K1 (1 - 5 δθ2> 

and using m(T) = <1 - δθ2/2...> for small θ as in text 

∆ ƒ = (K1/4)[m]10 

6.5 

easy = K0 + Ku <sin2 θ> ≈ƒa K0 + Ku <θ2>


hard = K0 + Ku <cos2 θ' ' '
ƒa	 + cos2 φ  sin2 θ > 
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' ≈ K0 + Ku <(1 - θ'2/2 )2 + cos2 φ θ'2 >


Since cos2 φ' averages to 1/2


ƒahard = K0 + Ku <1 - θ'2/2>


and ƒahard - ƒaeasy = Ku < 1 - 3 δθ2/2...> and m(T) = <cos θ> 

'= <1 - θ2/2 . . .> for θ or θ , 

so ƒahard - ƒaeasy = Ku (T)/Ku [0] = [m(T)] 3. 

6.7 In both cases the question we are asking is what is the measured magnetization in 

the hard direction after removal of a saturating field that was applied in the hard 

direction. 

For Fe or Ni after magnetization in the hard direction (<111> and <100>, 

respectively), the magnetization relaxes to the nearest easy axes, distributing itself 

equally among them: Ms/3 along each of the three nearest <100> directions for Fe and 

Ms/4 along each of the four nearest <111> directions for Ni. These axes have projections 

of 1/√ 3 on the original field direction in each case, so the sum over the 3 or 4 near easy 

axes gives a magnetization component along the hard direction of Ms/√ 3 = 0.577Ms, 

which is observed for both Fe and Ni after magnetization in the hard direction. 

Cobalt on the other hand has uniaxial symmetry and after magnetization in the 

hard base-plane direction, the remanence is zero because the nearest easy axis is the c 

axis, 90 degrees from the base plane which has zero projection in the hard direction. 

6.8 In the fully demagnetized state the

magnetization is uniformly distributed over the 

six directions, ±x, ±y, ±z. Application then 

removal of a field along [110], assuming easy 

wall motion, will result in a distribution along 

+x and +y in H = 0. So we just use one angular 



4 

variable, taken as θ in the figure. To write the energy density, note that 

1 1  0  == 
H0 ( ,  ,  )  and M M (cosθ ,sin θ ,0) so thatH110 2 s 

o s⋅− µ M H  = 
− µ M H

(cosθ + sinθ ).o 2 

The normalized component of µ M parallel to H is then given by m = (cosθ + sinθ)/√ 2,o

which gives m = 1 at saturation, θ = 45o. So the magnetic energy density is 

ƒ = − 
µ M H  K  2 2o s (cosθ + sinθ ) + sin θ 

2 4 

and 
o s0

∂ ƒ
= =  

− µ M H
(− sinθ + cosθ ) + K sin2θ cos2θ . 

∂θ 2 1 

But cos2θ = (cosθ - sinθ) (cosθ + sinθ) so we can cancel the first factor here from the 

torque equation; it is only zero at and above saturation. Thus, µ M H = √ 2K1sin2θ (cosθo s

+ sinθ). Using m = (cosθ + sinθ)/√ 2 or (2m2-1) = sin(2θ),  the equation of motion is 

µoMsH = 2K1 (2m2-1) m. 

This can be solved by plotting H vs. m as shown below. Here the values µ M = 2T ando s 

K1 = 6 × 104 J/m3 have been used. 
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This figure may be plotted as m vs H as shown below. From the analytic solution, 
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it is clear that saturation (m = 1) occurs for H  = 

2K1/µ M  = Ha = 60 kA/m.o s

The same equation of motion applies to 

the y component of magnetization. The 

initial magnetization curve of the component, 

Ms/3, along ± z will involve rotation of that 

component into + x and + y by 90o 

wall motion. Thereafter, all of the 

magnetization proceeds by the derived 

equation for M  and My.x

If wall motion is not easy, one would have to minimize the free energy including 

the full anisotropy in θ and φ. 

The case for the field applied along [111] is now treated. H = Ho(1, 1, 1, )/√ 3 

and the magnetization process is the same 

for each Cartesian component of M . We 

treat the component of M that initially lies 

along z. At arbitrary field it is given by 

M(H ) = M (sinθ/√ 2, sinθ/√ 2, cosθ). Thes 

Zeeman energy is 

.-µ M H = -(µ M H) (√ 2sinθ + cosθ)/√ 3.o o s

The cubic anisotropy for φ = 45o is given by 

2f = K1(
sin4 θ 

+ sin2 θ cos θ )a 4 

which has absolute minima at θ = 0 and π as well as at θ = π/2 with φ = 0, ±π /2 and π . 

Saddle points can also be identified from Fig. 6.6a). 

The zero-torque condition is given by: 

∂ƒ/∂θ = 0 = - (µ MsHo/√ 3) (√ 2cosθ - sinθ) + K1 sin2θ (1 + 3 cos2θ)/4,o
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which gives the equation of motion 

θ )[3K1 sin(2 1  + 3cos(2θ )]
H = . 

4µ M 2 cosθ − sinθo s 

This equation can be plotted parametrically with m = (√2sinθ + cosθ)/√3 to give 

the result shown below. Alternatively, it can be solved analytically (with little further 

insight) as shown in Cullity, p. 227. The zero-torque solution shown as dashed lines 

below can be excluded by looking at the stability condition, d2f/dθ2 > 0, which is negative 

for the dashed solutions. 

Note that the approach to saturation accelerates as m → 1. The remanence (at H = 

0 or θ = 0) is, from the definition of m, given by 1/√3 = 0.577. As H decreases from 

positive saturation, the magnetization reaches the extremum in the second quadrant. At 

this point, it is energetically favorable to jump to the third quadrant solution - if domain 

wall motion has not already taken the system to that branch. 
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6.9 The energy surface is described by E = +2π Ms2 cos2θ - Ku cos2θ where θ is the 

angle between M and the surface normal. Energy minimization gives (Ku - 2π Ms2) sinθ 

cosθ = 0 which has solutions at θ = 0 and π/2 or at Ku = 2π  Ms. Consideration of the 

stability condition (Ku - 2π Ms2) cos2θ > 0 indicates that θ = 0 is the stable condition for 

2Ku > 2π Ms2 and θ = π/2 for Ku < 2π  Ms . Only if Ku is exactly equal to 2π Ms2 could 

any intermediate orientation exist. There are other forms of anisotropy for which 0 < θ < 

π/2 is stable for a range of values of K and M s. 




