Solutions Chapter 6

6.1
a) $\alpha_{1}=\sin \theta \cos \phi, \alpha_{1}^{2}=\sin ^{2} \theta \cos ^{2} \phi$

$$
\begin{aligned}
& \alpha_{2}=\sin \theta \sin \phi, \alpha_{2}^{2}=\sin ^{2} \theta \sin ^{2} \phi \\
& \alpha_{3}=\cos \theta, \alpha_{3}^{2}=\cos ^{2} \theta \\
& \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}= \\
& \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+\cos ^{2} \theta=1
\end{aligned}
$$

b) $\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{3}^{2} \alpha_{1}^{2}=\sin ^{4} \theta \cos ^{2} \phi \sin ^{2} \phi$
$+\sin ^{2} \theta \sin ^{2} \phi \cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi \cos ^{2} \theta$
$=\sin ^{4} \theta \cos ^{2} \phi \sin ^{2} \phi+\sin ^{2} \theta \cos ^{2} \theta \quad \mathrm{QED}$

6.2 From Eq. 6.6

$$
\begin{aligned}
& f_{100}=K_{0}, \\
& f_{110}=K_{0}+K_{1} / 4, \text { and } \\
& f_{111}=K_{0}+K_{1} / 3+K_{2} / 27 .
\end{aligned}
$$

For Fe:
$\begin{array}{lll}f_{111}-f_{100} \approx & 1.6 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3} & =K_{1} / 3+\mathrm{K}_{2} / 27 \\ f_{110}-f_{100} \approx & 1.2 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3} & =K_{1} / 4\end{array}$

The second equation gives $K_{1}=4.8 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$ and using this in the first gives $K_{2} \approx 0$, in fair agreement with the tabulated values, $K_{1}=4.8 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}, K_{2}=-1 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$.

For Ni
f
$f_{110}-f_{111} \approx$
$2.2 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
$1.0 \times 10^{3} \mathrm{~J} / \mathrm{m}_{3}$
$=-K_{1} / 3-K_{2} / 27$
From Fig. 6.1
From Eq. 6.6
$=-K_{1} / 12-K_{2} / 27$

Subtracting these two equations gives $K_{1}=-4.8 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$ and, thus, $K_{2} \approx-1.6 \times 10^{3}$ $\mathrm{J} / \mathrm{m}^{3}$. These values compare well with the tabulated values, $K_{1}=-4.5 \times 10^{3}$ and $K_{2}=-2.3$ $\times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$. Clearly, there is significant opportunity for error in estimating the areas in Fig. 6.1 between the magnetization curves taken in different directions.
6.3 The energy gradient of Eq. 6.6 for small θ is given by $K_{1} \theta^{2}+\left(K_{1}+K_{2}\right) \sin ^{2} 2 \phi \theta^{2} / 4$. For Ni , both K_{1} and K_{2} are negative and $K_{1} \approx K_{2}$. Thus the energy gradient is given by $2\left|K_{1}\right| \theta\left[1+3 / 2 \theta^{2} \sin ^{2} 2 \phi\right]$ which is steeper for $\phi=45^{\circ}$. Thus M rotates toward the <111> directions, not <110>.
$6.4 f_{a}^{100}=K_{0}+K_{1}\left\langle\sin ^{4} \theta \cos ^{2} \phi \sin ^{2} \phi+\sin ^{2} \theta \cos ^{2} \theta>\right.$
for small θ we get $f_{a}^{100} \approx K_{o}+K_{1}<\theta>^{2}$ and
$\left.f_{a}{ }^{110}=K_{0}+K_{1} \cos ^{2} 2 \theta \approx K_{0}+K_{1}<1-(2 \delta \theta)^{2} / 2 \ldots\right\rangle^{2}$
$f_{a}{ }^{110}-f_{a}{ }^{100}=K_{1}\left(\left\langle 1-(2 \delta \theta)^{2} / 2 \ldots\right\rangle^{2}-\left\langle\delta \theta^{2}\right\rangle\right)=K_{1}\left(1-5 \delta \theta^{2}\right\rangle$
and using $m(T)=<1-\delta \theta^{2} / 2 \ldots>$ for small θ as in text
$\Delta f=\left(K_{1} / 4\right)[m]^{10}$
6.5

$$
\begin{aligned}
& f_{a}^{\text {easy }}=K_{0}+K_{u}\left\langle\sin ^{2} \theta\right\rangle \approx K_{0}+K_{u}\left\langle\theta^{2}\right\rangle \\
& f_{a}^{\text {hard }}=K_{0}+K_{u}\left\langle\cos ^{2} \theta^{\prime}+\cos ^{2} \phi^{\prime} \sin ^{2} \theta^{\prime}\right\rangle
\end{aligned}
$$

$$
\approx K_{0}+K_{u}\left\langle\left(1-\theta^{\prime 2} / 2\right)^{2}+\cos ^{2} \phi^{\prime} \theta^{\prime 2}\right\rangle
$$

Since $\cos ^{2} \phi^{\prime}$ averages to $1 / 2$

$$
\begin{aligned}
& f_{a}^{\text {hard }}=K_{0}+K_{u}<1-\theta^{2} / 2> \\
& \quad \text { and } f_{a}^{\text {hard }}-f_{a}^{\text {easy }}=K_{u}<1-3 \delta \theta^{2} / 2 \ldots>\text { and } m(T)=<\cos \theta> \\
& =<1-\theta^{2} / 2 \ldots>\text { for } \theta \text { or } \theta^{\prime}, \\
& \text { so } f_{a}^{\text {hard }-} f_{a}^{\text {easy }}=K_{u}(T) / K_{u}[0]=[m(T)]^{3} .
\end{aligned}
$$

6.7 In both cases the question we are asking is what is the measured magnetization in the hard direction after removal of a saturating field that was applied in the hard direction.

For Fe or Ni after magnetization in the hard direction (<111> and <100>, respectively), the magnetization relaxes to the nearest easy axes, distributing itself equally among them: $M_{s} / 3$ along each of the three nearest <100> directions for Fe and $M_{S} / 4$ along each of the four nearest <111> directions for Ni. These axes have projections of $1 / \sqrt{ } 3$ on the original field direction in each case, so the sum over the 3 or 4 near easy axes gives a magnetization component along the hard direction of $M_{s} / \sqrt{ } 3=0.577 M_{s}$, which is observed for both Fe and Ni after magnetization in the hard direction.

Cobalt on the other hand has uniaxial symmetry and after magnetization in the hard base-plane direction, the remanence is zero because the nearest easy axis is the c axis, 90 degrees from the base plane which has zero projection in the hard direction.
6.8 In the fully demagnetized state the magnetization is uniformly distributed over the six directions, $\pm x, \pm y, \pm z$. Application then removal of a field along [110], assuming easy wall motion, will result in a distribution along $+x$ and $+y$ in $H=0$. So we just use one angular

variable, taken as θ in the figure. To write the energy density, note that

$$
\begin{aligned}
\boldsymbol{H}_{110}=\frac{H_{0}}{\sqrt{2}}(1,1,0) \text { and } M & =M_{s}(\cos \theta, \sin \theta, 0) \text { so that } \\
-\mu_{o} \boldsymbol{M} \cdot \boldsymbol{H} & =\frac{-\mu_{o} M_{s} H}{\sqrt{2}}(\cos \theta+\sin \theta) .
\end{aligned}
$$

The normalized component of $\mu_{o} M$ parallel to H is then given by $m=(\cos \theta+\sin \theta) / \sqrt{ } 2$, which gives $m=1$ at saturation, $\theta=45^{\circ}$. So the magnetic energy density is

$$
f=-\frac{\mu_{o} M_{s} H}{\sqrt{2}}(\cos \theta+\sin \theta)+\frac{K}{4} \sin ^{2} 2 \theta
$$

and

$$
\frac{\partial f}{\partial \theta}=0=\frac{-\mu_{o} M_{s} H}{\sqrt{2}}(-\sin \theta+\cos \theta)+K_{1} \sin 2 \theta \cos 2 \theta
$$

But $\cos 2 \theta=(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)$ so we can cancel the first factor here from the torque equation; it is only zero at and above saturation. Thus, $\mu_{o} M_{s} H=\sqrt{ } 2 K_{1} \sin 2 \theta(\cos \theta$ $+\sin \theta)$. Using $m=(\cos \theta+\sin \theta) / \sqrt{ } 2$ or $\left(2 m^{2}-1\right)=\sin (2 \theta)$, the equation of motion is

$$
\mu_{\mathrm{o}} M_{\mathrm{s}} H=2 K_{1}\left(2 m^{2}-1\right) m .
$$

This can be solved by plotting H vs. m as shown below. Here the values $\mu_{0} M_{\mathrm{s}}=2 \mathrm{~T}$ and $K_{1}=6 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$ have been used.

This figure may be plotted as m vs H as shown below. From the analytic solution,
it is clear that saturation $(m=1)$ occurs for $H=$ $2 K_{l} / \mu_{o} M_{s}=H_{a}=60 \mathrm{kA} / \mathrm{m}$.

The same equation of motion applies to the y component of magnetization. The initial magnetization curve of the component, $M_{s} / 3$, along $\pm z$ will involve rotation of that component into $+x$ and $+y$ by 90° wall motion. Thereafter, all of the magnetization proceeds by the derived equation for M_{x} and M_{y}.

If wall motion is not easy, one would have to minimize the free energy including the full anisotropy in θ and ϕ.

The case for the field applied along [111] is now treated. $\boldsymbol{H}=H_{0}(1,1,1,) / \sqrt{3}$ and the magnetization process is the same for each Cartesian component of \boldsymbol{M}. We treat the component of \boldsymbol{M} that initially lies along z. At arbitrary field it is given by $M(H)=M_{\mathrm{s}}(\sin \theta / \sqrt{ } 2, \sin \theta / \sqrt{ } 2, \cos \theta)$. The Zeeman energy is

$$
-\mu_{o} \boldsymbol{M} \cdot \boldsymbol{H}=-\left(\mu_{o} M_{s} H\right)(\sqrt{ } 2 \sin \theta+\cos \theta) / \sqrt{ } 3 .
$$

The cubic anisotropy for $\phi=45^{\circ}$ is given by

$$
f_{a}=K_{1}\left(\frac{\sin ^{4} \theta}{4}+\sin ^{2} \theta \cos ^{2} \theta\right)
$$

which has absolute minima at $\theta=0$ and π as well as at $\theta=\pi / 2$ with $\phi=0, \pm \pi / 2$ and π. Saddle points can also be identified from Fig. 6.6a).

The zero-torque condition is given by:

$$
\partial f / \partial \theta=0=-\left(\mu_{o} M_{s} H_{o} / \sqrt{ } 3\right)(\sqrt{ } 2 \cos \theta-\sin \theta)+K_{1} \sin 2 \theta(1+3 \cos 2 \theta) / 4
$$

which gives the equation of motion

$$
H=\frac{\sqrt{3} K_{1}}{4 \mu_{o} M_{s}} \frac{\sin (2 \theta)[1+3 \cos (2 \theta)]}{\sqrt{2} \cos \theta-\sin \theta} .
$$

This equation can be plotted parametrically with $m=(\sqrt{ } 2 \sin \theta+\cos \theta) / \sqrt{3}$ to give the result shown below. Alternatively, it can be solved analytically (with little further insight) as shown in Cullity, p. 227. The zero-torque solution shown as dashed lines below can be excluded by looking at the stability condition, $d^{2} f / d \theta^{2}>0$, which is negative for the dashed solutions.

Note that the approach to saturation accelerates as $m \rightarrow 1$. The remanence (at $H=$ 0 or $\theta=0$) is, from the definition of m, given by $1 / \sqrt{3}=0.577$. As H decreases from positive saturation, the magnetization reaches the extremum in the second quadrant. At this point, it is energetically favorable to jump to the third quadrant solution - if domain wall motion has not already taken the system to that branch.
6.9 The energy surface is described by $E=+2 \pi M_{s}^{2} \cos ^{2} \theta-K_{u} \cos ^{2} \theta$ where θ is the angle between \boldsymbol{M} and the surface normal. Energy minimization gives $\left(K_{u}-2 \pi M_{s}{ }^{2}\right) \sin \theta$ $\cos \theta=0$ which has solutions at $\theta=0$ and $\pi / 2$ or at $K_{u}=2 \pi M_{s}$. Consideration of the stability condition $\left(K_{u}-2 \pi M_{s}{ }^{2}\right) \cos 2 \theta>0$ indicates that $\theta=0$ is the stable condition for $K_{u}>2 \pi M_{s}{ }^{2}$ and $\theta=\pi / 2$ for $K_{u}<2 \pi M_{s}{ }^{2}$. Only if K_{u} is exactly equal to $2 \pi M_{s}{ }^{2}$ could any intermediate orientation exist. There are other forms of anisotropy for which $0<\theta<$ $\pi / 2$ is stable for a range of values of K and M_{s}.

