CHAPTER 1 PROBLEMS

1.1 What is the field in the middle and at the end of a 20 cm long solenoid (2 cm in diameter) uniformly wound with 200 turns of wire carrying 0.5 amperes. Give fields B and H in SI and cgs/emu units.
1.2 Consider the magnetic field inside a toroid of circular cross section with inner radius $r_{1}=3 \mathrm{~cm}$ and outer radius $r_{2}=4 \mathrm{~cm}$ wound uniformly with 100 turns of wire carrying a current of 1.0 Ampere. Calculate the field at $r=3.5 \mathrm{~cm}$ and plot the field as a function of r for $3.1 \leq r \leq 3.9 \mathrm{~cm}$.
1.3

1.3 For what values of $\Delta r=r_{2}-r_{1}$ and $r_{\text {ave }}=\left(r_{1}+r_{2}\right) / 2$ is the variation of the field less than 10% across the inside of a toroid?
1.4 Carry out the steps described after Fig. 1.9 to estimate the magnetic moment of a hydrogenic orbit in the Bohr model.
1.5 Use Eq. 1.14 to sketch the vector components of the magnetic field along the axis, 45° off the axis and on the plane of a current loop at a distance of twice the radius of the loop.

