MIT OpenCourseWare
http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 - Lecture 7 ONE BLOCH AT A TiME

Last time

1. Vector space (expectation values measure the projection on different eigenvectors)
2. Eigenvalues and eigenstates as a linear algebra problem
3. Variational principle
4. Its application to a H atom (atomic units)
5. Hamiltonian for a molecular system; bonding and antibonding states
6. Potential energy surface of a molecule
7. Vibrations at equilibrium; quantum harmonic oscillator

Study

- Chapter 2 of Singleton textbook - "Band theory and electronic properties of solids"

Dynamics, Lagrangian style

- First construct $L=T-V$
- Then, the equations of motion are given by

- Why ? We can use generalized coordinates.

Also, we only need to think at the two scalar functions T and V

Newton's second law, too

- 1-d, 1 particle: $\mathrm{T}=1 / 2 \mathrm{mv}^{2}, \mathrm{~V}=\mathrm{V}(\mathrm{x})$

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0 \\
\frac{d}{d t}\left(\frac{\partial\left(\frac{1}{2} m \dot{x}^{2}\right)}{\partial \dot{x}}\right)+\frac{\partial V}{\partial x}=0 \Longrightarrow \frac{d}{d t}(m \dot{x})=-\frac{\partial V}{\partial x}
\end{gathered}
$$

Hamiltonian

- We could use it to derive Hamiltonian dynamics (twice the number of differential equations, but all first order). We introduce a Legendre transformation

$$
\begin{aligned}
& p_{i}=\frac{\partial L}{\partial \dot{q}_{i}} \\
& H(q, p, t)=\sum_{i} \dot{q}_{i} p_{i}-L(q, \dot{q}, t) \\
& E(V, \delta) \rightarrow \\
& H=E+P V= \\
& =H(P, S)
\end{aligned}
$$

$$
l=T \cdot V
$$

1-dimensional monoatomic chain

$q_{i}=\frac{\partial H}{\partial p_{i}} \quad-\dot{p}_{i}=\frac{\partial H}{\partial q_{i}}$
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

$$
\begin{aligned}
& H=\sum_{s} H_{s} \quad H_{s}=\frac{p_{s}^{s}}{2 M}+\frac{1}{2} K\left(u_{s}-u_{s+1}\right)^{2} \\
& +M \frac{d^{2} u_{s}}{d t^{2}}=k\left(u_{s+1}-u_{s-1}^{2}-2 u_{s}\right) \\
& \left.u_{s} \times e^{-i \omega t} u_{s-1}-u_{s}\right)^{2}+\ldots \\
& -M \omega^{2} u_{s}=N\left(u_{s+1} * u_{s-1}-2 u_{s}\right) \\
& u_{s}=u e^{i s k a}
\end{aligned}
$$

Properties

- Unique solutions for k in the first $B Z$

$$
\begin{array}{r}
\frac{u_{s}}{u_{s+1}}=\frac{e^{i h s a}}{e^{i(s(s+1) a}}=e^{-i k a} k^{-i\left(h+\frac{2 \pi}{a} n\right) a}=e^{-i k_{a}}
\end{array}
$$

- Phase velocity and group velocity

$$
U_{\text {rAh } \delta_{i}}=\frac{w}{k} e^{i(h r-w t)}
$$

$$
U_{\text {Glop }}=\frac{d w}{d k}
$$

Properties

- Standing waves $\underset{d \vec{h}}{d \vec{w}}=0 \quad h= \pm \frac{\pi}{a}$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

1-dimensional diatomic chain

III. Equations of motion

$$
\begin{aligned}
& M \frac{d^{2} u_{1, s}}{d t^{2}}=K\left(u_{2, s}-u_{1, s}\right)+G\left(u_{2, s-1}-u_{1, s}\right) \\
& M \frac{d^{2} u_{2, s}}{d t^{2}}=K\left(u_{1, s}-u_{2, s}\right)+G\left(u_{1, s+1}-u_{2, s}\right)
\end{aligned}
$$

IV. Solutions

$$
u_{1 s}=u_{1} e^{i s s} e^{-i a t}, u_{2 s}=u_{2} e^{i s s} e^{-i s t}
$$

V. Dispersion relations

$$
\begin{aligned}
& \left(M \omega^{2}-(K+G)\right) u_{1}+\left(K+G e^{-i a^{2}}\right) u_{2}=0 \\
& \left(K+G e^{i k}\right) u_{1}+\left(M \omega^{2}-(K+G)\right) u_{2}=0
\end{aligned}
$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The homogenous linear equations have a solution only if the determinant of the coefficients is zero:

$$
\begin{gathered}
\left|\begin{array}{cc}
\left(M \omega^{2}-(K+G)\right) & \left(K+G e^{-i k a}\right) \\
\left(K+G e^{i k a}\right) \quad\left(M \omega^{2}-(K+G)\right)
\end{array}\right|=0 \\
\omega^{2}=\frac{K+G}{M} \pm \frac{1}{M} \sqrt{K^{2}+G^{2}+2 K G \cos k a} \\
\frac{u_{1}}{u_{2}}=\mp \frac{K+G e^{-i k a}}{\left|K+G e^{i k a}\right|}
\end{gathered}
$$

with solutions:
for each k there are two solutions which are called the two branches of the dispersion curves.

Image removed due to copyright restrictions.

Please see Fig. 22.10 in Ashcroft, Neil W., and N. David Mermin. Solid State Physics. Belmont, CA: Brooks/Cole, 1976. ISBN: 9780030839931.

Translational Symmetry

Figure by MIT OpenCourseWare.

Bravais Lattices

- Infinite array of points with an arrangement and orientation that appears exactly the same regardless of the point from which the array is viewed.

$$
\begin{aligned}
& \vec{R}=l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3} \quad 1, \mathrm{~m} \text { and } \mathrm{n} \text { integers } \\
& \vec{a}_{1}, \vec{a}_{2} \text { and } \vec{a}_{3} \text { primitive lattice vectors }
\end{aligned}
$$

- 14 Bravais lattices exist in 3 dimensions (1848)
- M. L. Frankenheimer in 1842 thought they were 15 . So, so naïve...

Figure by MIT OpenCourseWare.

Symmetry

- Symmetry operations: actions that transform an object into a new but undistinguishable configuration
- Symmetry elements: geometric entities (axes, planes, points...) around which we carry out the symmetry operations

Figure by MIT OpenCourseWare.

Symmetry elements and their corresponding operations

Symmetry elements

E Identity
$\mathrm{C}_{\mathrm{n}} \quad \mathrm{n}$-Fold rotation axis
σ Mirror plane
i Inversion center
$\mathrm{S}_{\mathrm{n}} \quad \mathrm{n}$-Fold rotation-reflection axis

Symmetry operations

E	leave molecule unchanged
$\hat{C}_{n}, \hat{C}_{n}^{2}, \ldots \ldots, \hat{C}_{n}^{n}$	rotate about axis by $360^{\circ} / \mathrm{n} 1,2, \ldots ., \mathrm{n}$ times (indicated by superscript)
$\hat{\sigma}$	reflect through the mirror plane
\hat{i}	$(x, y, z) \rightarrow(-x,-y,-z)$
\hat{S}_{n}	rotate about axis by $360^{\circ} / \mathrm{n}$, and reflect through a plane perpendicular to axis.

Figure by MIT OpenCourseWare.

Group Therapy...

A group G is a finite or infinite set of elements $A, B, C, D . .$. together with an operation "" that satisfy the four properties of:

1. Closure: If A and B are two elements in G, then A i B is also in G.

2. Identity: There is an identity element I such that 1 every element A in G.
3. Inverse: There is an inverse or reciprocal of each element. Therefore, the set must contain an element $B=\operatorname{inv}(A)$ such that A

Examples

- Integer numbers, and addition
- Integer numbers, and multiplication
- Real numbers, and multiplication
- Rotations around an axis by $360 / n$

Figure by MIT OpenCourseWare.

The 4 symmetry operations of $\mathrm{H}_{2} \mathrm{O}$ form a group (called $\mathrm{C}_{2 \mathrm{v}}$)

1. Closure: $\mathrm{A}=\mathrm{B}$ is also in G .
2. Associativity: $(\mathrm{A}=\mathrm{B})$ 次 $\mathrm{C}=\mathrm{A}=(\mathrm{B}=\mathrm{C})$
3. Identity: $\mathrm{I}=\mathrm{A}=\mathrm{A}=\mathrm{I}$
4. Inverse: $\mathrm{A}=\operatorname{inv}(\mathrm{A})=\operatorname{inv}(\mathrm{A})$

Second	First Operation			
Operation	\hat{E}	\hat{C}_{2}	$\hat{\sigma}_{v}$	$\hat{\sigma}_{v}^{\prime}$
$\hat{\mathrm{E}}$	$\hat{\mathrm{E}}$	$\hat{\mathrm{C}}_{2}$	$\hat{\sigma}_{v}$	$\hat{\sigma}_{\mathrm{v}}$
$\hat{\mathrm{C}}_{2}$	$\hat{\mathrm{C}}_{2}$	$\hat{\mathrm{E}}$	$\hat{\sigma}_{\mathrm{v}}$	$\hat{\sigma}_{\mathrm{v}}$
$\hat{\sigma}_{\mathrm{v}}$	$\hat{\sigma}_{\mathrm{v}}$	$\hat{\sigma}_{\mathrm{v}}^{\prime}$	$\hat{\mathrm{E}}$	$\hat{\mathrm{C}}_{2}$
$\hat{\sigma}_{\mathrm{v}}$	$\hat{\sigma}_{\mathrm{v}}^{\prime}$	$\hat{\sigma}_{\mathrm{v}}$	$\hat{\mathrm{C}}_{2}$	$\hat{\mathrm{E}}$

Figure by MIT OpenCourseWare

Ten crystallographic point groups in 2d

0
C_{1}

C_{4}

m
C_{s}

4 mm
$\mathrm{C}_{4 \mathrm{v}}$

The ten crystallographic plan point groups. Upper symbol,
Figure by MIT OpenCourseWare. international notation; lower symbol, Schoenflies notation (see text).

The Crystallographic Point Groups and the Lattice Types.

32 crystallographic point groups in 3d

1) Each component in the name refers to a different direction. For example, the symbol for the orthorhombic group, 222, refers to the symmetry around the x, , and z axes, respectively
2) The position of the symbol m indicates the direction perpendicular to the mirror plane.
(3) Fractional symbols mean that the axes of the operators in the numerator and denominator are parallel. For example. $2 / \mathrm{m}$ means that there is a mirror plane perpendicular to a rotation dad.
3) For the orthorhombic system, the three symbols refer to the three mutually perpendicular x, y, and z axes, in that order.
4) All tetragonal groups have a 4 or 4 rotation axis in the z-direction and this is listed first. The second component refers to the symmetry around the mutually perpendicular x and y axes and the third component refers to the directions in the $x-y$ plane that bisect the x and y axes.
5) In the trigonal systems (which always have a 3 or 3 axis first) and hexagonal systems (which always have a 6 or 6 axis first), the second symbol describes the smmetry around the equivalent directions (either 120° or 60° apart) in the plane perpendicular to the $3,3,6$, or 6 axis
6) A third component in the hexagonal system refers to directions that bisect the angles between the axes specified by the second symbol.
7) If there is a 3 in the second position, it is a cubic point group. The 3 refers 10
(8) If there is a 3 in the second position, it is a cubic point group. The 3 refers to station triads along the four body diagonals of the cube. The first symbol refers to the cube axis and the third to the face diagonals

Crystal Structure = Lattice + Basis

Crystal Structure = Lattice + basis

Primitive unit cell and conventional unit cell

Figure by MIT OpenCourseW are.

Periodic boundary conditions for the ions (i.e. the ext. potential)

- Unit cell = Bravais lattice = space filler
- Atoms in the unit cell + infinite periodic replicas

Reciprocal lattice (I)

- Let's start with a Bravais lattice, defined in terms of its primitive lattice vectors...

$$
\vec{R}=l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3}
$$

$$
l, m, n \text { integer numbers }
$$

$$
\vec{R}=(l, m, n)
$$

Reciprocal lattice (II)

- ...and then let's take a plane wave

Reciprocal lattice (III)

- What are the wavevectors for which our plane wave has the same amplitude at all lattice points?

$$
\begin{array}{ll}
\exp [i(\vec{G} \cdot \vec{r})]=\exp [i(\vec{G} \cdot(\vec{r}+\vec{R}))] & \begin{array}{l}
\vec{a}_{1}, \vec{a}_{2} \text { and } \vec{a}_{3} \text { define the } \\
\text { primitive unit cell }
\end{array} \\
\exp [i(\vec{G} \cdot \vec{R})]=1 & \vec{G}_{i} \cdot \vec{a}_{j}=2 \pi \delta_{i j} \\
\exp \left[i\left(\vec{G} \cdot\left(l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3}\right)\right)\right]=1
\end{array} \quad \begin{aligned}
& \vec{G}_{1}, \vec{G}_{2} \text { and } \vec{G}_{3} \text { define the } \\
& \text { reciprocal space Brillouin Zone }
\end{aligned}
$$

Reciprocal lattice (IV)

$\vec{G}_{i} \cdot \vec{a}_{j}=2 \pi \delta_{i j} \quad \mathrm{n}$ integer is satisfied by $\vec{G}=h \vec{b}_{1}+i \vec{b}_{2}+j \vec{b}_{3}$ with h, i, j integers, provided $\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1}\left(\vec{a}_{2} \times \vec{a}_{3}\right)} \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1}\left(\vec{a}_{2} \times \vec{a}_{3}\right)} \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1}\left(\vec{a}_{2} \times \vec{a}_{3}\right)}$
$\vec{G}=(h, i, j)$ are the reciprocal-lattice vectors

Examples of reciprocal lattices

Direct lattice	Reciprocal lattice
Simple cubic	Simple cubic
FCC	$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}$
BCC	FCC
Orthorhombic	Orthorhombic

