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3.23 Fall 2007 – Lecture 7 

ONE BLOCH AT A TIME


3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007) 

Last time 

1.	 Vector space (expectation values measure the projection 
on different eigenvectors)on different eigenvectors) 

2.	 Eigenvalues and eigenstates as a linear algebra problem 

3.	 Variational principle 

4.	 Its application to a H atom (atomic units) 

5.	 Hamiltonian for a molecular system; bonding and 
antibonding states 

6.	 Potential energy surface of a molecule 

7.	 Vibrations at equilibrium; quantum harmonic oscillator 
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• –

•

Study 

• Chapter 2 of Singleton textbook – “BandBandChapter 2 of Singleton textbook 
theory and electronic properties of solids” 
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Dynamics, Lagrangian style 

• First construct L=T-VFirst construct L=T V 
• Then, the equations of motion are given by 

(the dot is a time derivative) 

• Why ? We can use generalized coordinates. 
Also, we only need to think at the two 
scalar functions T and V 
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• 2

Newton’s second law, too 

• 1 d 1 particle: T=1/2 mv2 V=V(x)1-d, 1 particle: T=1/2 mv , V=V(x) 
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Hamiltonian 

• We could use it to derive Hamiltonian 
dynamics (twice the number of differential 
equations, but all first order). We introduce 
a  Legendre transformation 

pi = ∂L H (q, p, t) =∑q&i pi − L(q, q&, t)
∂qi∂q& ii i 

∂H ∂H q&i = − p& i = 
∂pi ∂qi 
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1-dimensional monoatomic chain
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Properties 

• Unique solutions for k in the first BZ 

uus 

us+1 

• Phase velocity and group velocity 
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Properties 

• Standing waves Standing waves 

• Long wavelength limit 
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Ring geometry
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1-dimensional diatomic chain 
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Translational Symmetry 
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Image removed due to copyright restrictions. 
Please see Fig. 22.10 in Ashcroft, Neil W., and N. David Mermin. Solid State Physics. Belmont, 
CA: Brooks/Cole, 1976. ISBN: 9780030839931.



Bravais Lattices 

•	 Infinite arrayy of ppoints with an arranggement and orientation that 
appears exactly the same regardless of the point from which the 
array is viewed. 
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r 

3 primitive lattice vecto rs 

•	 14 Bravais lattices exist in 3 dimensions (1848) 

•	 M. L. Frankenheimer in 1842 thought they were 15. So, so naïve… 
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Centered (F)
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a 23= a 31= 900

a1 = a2 = a3

a 12 = a 23 = a 31 = 900

a1 = a2 = a3

a 12 = a 23 = a 31 < 1200

a3

a
1

a2

4 Lattice Types
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Symmetry 

• Symmetry operations: actions thatSymmetry operations: actions that 
transform an object into a new but 
undistinguishable configuration 

• Symmetry elements: geometric entities 
(axes, planes, points…) around which we 
carry out the symmetry operations 
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Group Therapy… 

A group G is a finite or infinite set of elements A, B, C, D…together 
with an operation “☼” that satisfy the four properties of: 

1. Closure: If A and B are two elements in G, then A☼B is also in G. 

2. Associativity: For all elements in G, (A☼B) ☼C==A☼ (B☼C). 

3. Identity: There is an identity element I such that I☼A=A☼I=A for 
every element A in G. 

4. Inverse: There is an inverse or reciprocal of each element. 
Therefore, the set must contain an element B=inv(A) such 
that A☼inv(A)=inv(A) ☼A=I for each element of G. 
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Symmetry elements and their corresponding operations

Symmetry elements Symmetry operations

E
Cn

σ

i

Sn

EIdentity

n-Fold rotation axis

n-Fold rotation-reflection axis

Mirror plane

Inversion center

Cn, Cn2                                                                                                              ,....., Cnn

σ

i

Sn

leave molecule unchanged

rotate about axis by 360o /n 1, 2, .... , n times (indicated by superscript)

reflect through the mirror plane

(x, y, z)     (-x, -y, -z)

rotate about axis by 360o /n, and reflect through a plane perpendicular to axis.

Figure by MIT OpenCourseWare.
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Examples 

• Integer numbers, and addition 

• Integer numbers, and multiplication 

• Real numbers, and multipplication 

• Rotations around an axis by 360/n 
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The 4 symmetry operations of H2O 
form a group (called C2v) 

1. Closure: A☼B is also in G. 
2. Associativity: (A☼B) ☼C=A☼ (B☼C) 
3. Identity: I☼A=A☼I 
4. Inverse: A☼inv(A)=inv(A) ☼A=I 

Ten crystallographic point groups in 2d
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The ten crystallographic plan point groups. Upper symbol,
international notation; lower symbol, Schoenflies notation
(see text).

Figure by MIT OpenCourseWare.



32 crystallographic

point groups in 3d


Crystal Structure = Lattice + Basis


Crystal Structure = Lattice + basis 

Lattice 

Basis 
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Crystal System Schoenflies 
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Hermann-Mauguin 
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The Crystallographic Point Groups and the Lattice Types.



Primitive unit cell and conventional unit cell


Periodic boundary conditions 
for the ions (i.e. the ext. potential) 

•	 Unit cell = Bravais lattice = 
space filler 

•	 Atoms in the unit cell + 
infinite periodic replicas 
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Reciprocal lattice (I) 

• Let’s start with a Bravais lattice, defined in 
terms of its primitive lattice vectors… 

2a 
r3a 

r 

1a 
r 

r r r rR la1 + ma2 + na3 = 
l m n 	, , n integer numbers , ,  integer numbers l m
R 
r 

= ( , ,  )l m n  

Reciprocal lattice (II) 

• …and then let’s take a plane wave 

r 
( ) exp[ ( )] r  A  i G  r  Ψ = ⋅ r r 
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Reciprocal lattice (III) 

• What are the wavevectors for which our 
plane wave has the same amplitude at all 
lattice points ? 

exp[ ( 
r 

⋅ r 
r)] = exp[ ( 

r 
⋅ (r + 

r 
))] ar , a 

r 
2 and a 

r 
3 define thei G i G r R  1 

r
⋅ 
r 

1 primitive unit cellexp[ ( i G R  )] = 
r rr rr rr r[ ( i ⋅ ( a m + a ))] = 1 G a⋅ r = 2πδexp[ ( G lG l( + a n ))] 11 2 3 

i j ij 

r r r 
,  and GG G   define the 1 2 3 

reciprocal space Brillouin Zone 

Reciprocal lattice (IV) 

r rG aG a == 2πδπδ n integer is satisfied by n integer is satisfied byi ⋅ j 2 ij 
r r r  r  
G h 1 + i 2 + jb3 with  h, ,= b b  i j   integers, 

r r  r r  r r  a a× r a ×a a ar r ×provided b = 2π 2 3  b = 2π 3 1 b = 2π 1 2  
1 r r r  2 r r r  3 r r  r  a a a  a a a  ⋅ (⋅( × ) ( × ) a ⋅ a ×a )1 2 3  1 2 3  1 2 3  

r 
= , ,G h( i j  )  are the reciprocal-lattice ve ctors 
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Examples of reciprocal lattices


Direct lattice Reciprocal lattice 

Simple cubic Simple cubic 

FCC BCC 

BCCBCC FCCFCC 

Orthorhombic Orthorhombic 

r r 
r a a×2 3b1 = 2π r ⋅( r × r )a a a  1 2 3  
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