MIT OpenCourseWare
http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 - Lecture 4 (LOSE TO COLLAPSE

The collapse of the wavefunction

Travel

- Office hour (this time only):
- This Friday, Sep 21, 4pm
- (instread of Mon, Sep 24, 4pm)

Last time: Wave mechanics

1. The et $|\Psi\rangle$ describe the system
2. The evolution is deterministic, but it applies to stochastic events
3. Classical quantities are replaced by operators
4. The results of measurements are eigenvalues, and the et collapses in an eigenvector

Commuting Hermitian operators have a set of common eigenfunction
$\hat{A}, \hat{B} \quad[\hat{A}, \hat{B}]=0 \Leftrightarrow \hat{A} \hat{B}=\hat{B} \hat{A} \quad \hat{A}\left|\psi_{n}\right\rangle=a_{n}\left|\psi_{n}\right\rangle$
I) $\left.\hat{A} \hat{B}\left|\psi_{n}\right\rangle=\hat{B} \hat{A}\left(\psi_{n}\right)=\hat{B} a_{n}\left(\psi_{n}\right)=a_{n} \hat{B} \mid \psi_{n}\right)$
$\hat{A}\left(\hat{B}\left|\psi_{n}\right\rangle\right)=a_{n}\left(\hat{B}\left|\psi_{n}\right\rangle\right)$, pardon anions to
II)

Fifth postulate

- If the measurement of the physical quantity A gives the result a_{n}, the wavefunction of the system immediately after the measurement is the eigenvector $\left|\psi_{n}\right\rangle$

Position and probability

Graphs of the probability density for positions of a particle in a one-dimensional hard box according to classical mechanics removed for copyright reasons. See Mortimer, R. G. Physical Chemistry. 2nd ed. San Diego, CA: Elsevier, 2000, page 555, Figure 15.3.

"Collapse" of the wavefunction

Figure by MIT OpenCourseWare.
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Quantum double-slit

Image removed due to copyright restrictions.
Please see any experimental
verification of the double-slit experiment, such as
http://commons.wikimedia.org/wiki/Image:Doubleslitexperiment results Tanamura 1.gif

Image of a double-slit experiment simulation removed
due to copyright restrictions. Please see "Double Slit Experiment." in Visual Quantum Mechanics.

Deterministic vs. stochastic

- Classical, macroscopic objects: we have welldefined values for all dynamical variables at every instant (position, momentum, kinetic energy...)
- Quantum objects: we have well-defined probabilities of measuring a certain value for a dynamical variable, when a large number of identical, independent, identically prepared physical systems are subject to a measurement.

When scientists turn bad...

Image from Wikimedia Commons, http://commons.wikimedia.org.

Cat wavefunction

$$
\left|\Psi_{\text {cat }}(t)\right\rangle=\left|\Psi_{\text {alive }}\right\rangle\left(\exp \left(-\frac{t}{\tau}\right)\right)^{\frac{1}{2}}+\left|\Psi_{\text {dead }}\right\rangle\left(1-\exp \left(-\frac{t}{\tau}\right)\right)^{\frac{1}{2}}
$$

- There is not a value of the observable until it's measured (a conceptually different "statistics" from thermodynamics)

$$
y(\grave{r})
$$

$$
(A)=\int Y^{R}(A Y) d \vec{r}
$$

$$
(\Delta A)^{2}=\left\langle(A-\langle A\rangle)^{2}\right\rangle=\left\langle A^{2}\right\rangle-\langle A\rangle^{2}
$$

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

$$
\left[x,-i \hbar \frac{d}{d x}\right]=i \hbar
$$

Linewidth Broadening

Image removed due to copyright restrictions.
Please see: Fig. 2 in Uhlenberg, G., et al. "Magneto-optical Trapping of Silver Ions." Physical Review A 62 (November 2000): 063404.

$\Delta E \Delta t \geq \frac{\hbar}{2}$

Top Three List

- Albert Einstein: "Gott wurfelt nicht!" [God does not play dice!]
- Werner Heisenberg "I myself . . . only came to believe in the uncertainty relations after many pangs of conscience. . ."
- Erwin Schrödinger: "Had I known that we were not going to get rid of this damned quantum jumping, I never would have involved myself in this business!"

Spherical Coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta
\end{aligned}
$$

Figure by MIT OpenCourseWare.

Angular Momentum

$$
\begin{array}{rl}
\text { Classical } & \text { Quantum } \\
\vec{L}=\vec{r} \times \vec{p} & \hat{L}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
p_{x} & y \\
p_{n} & p_{y} \\
p_{z} & x \\
j & y \\
p_{n} & p_{y} \\
m v & \hat{L}_{y}=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \\
& \hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
\end{array}
$$

Commutation Relation

$$
\begin{aligned}
& \hat{L}^{`} \hat{L}_{x}^{`} \hat{L}_{y}^{\prime} \hat{L}_{z}^{`} \\
& {\left[\hat{L}^{2}, \hat{L}_{x}\right]=\left[\hat{L}^{2}, \hat{L}_{y}\right]=\left[\hat{L}^{2}, \hat{L}_{z}\right]=0} \\
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]-i \hbar \hat{L}_{z} \neq 0}
\end{aligned}
$$

Angular Momentum in Spherical Coordinates

$$
\begin{aligned}
& \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \varphi} \\
& \hat{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right)
\end{aligned}
$$

Eigenfunction of L_{z}, L^{2}

$$
\begin{aligned}
& \hat{L}_{z} Y_{l}^{m}(\theta, \varphi)=-i \hbar \frac{\partial}{\partial \varphi} Y_{l}^{m}(\theta, \varphi)=m \hbar Y_{l}^{m}(\theta, \varphi) \\
& -\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right) Y_{l}^{m}(\theta, \varphi)=\hbar^{2} l(l+1) Y_{l}^{m}(\theta, \varphi)
\end{aligned}
$$

Simultaneous eigenfunction of L^{2}, L_{z} NAMEMBE TH AS

$$
x w^{\prime}-l \leq m \leq l
$$

Figure by MIT OpenCourseWare.
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Same as a beating drum...

Copyright © 1999, 2000 David M. Harrison. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, vX.Y or later (the latest version is presently available at http://www.opencontent.org/openpub/).

...for the career helioseismologist

Image courtesy of NSO/AURA/NSF. Used with permission.
Normal modes (i.e. sound, or seismic waves) for the Sun (basically jello in a 3d spherical box)

Angular Momentum, then...

$$
\begin{aligned}
& L^{2}=l(l+1) \hbar^{2}=0, \quad 2 \hbar^{2}, \quad 6 \hbar^{2} \ldots \\
& L_{z}=0, \quad \pm \hbar, \quad \pm 2 \hbar, \quad \pm 3 \hbar \ldots
\end{aligned}
$$

Cones of possible angular momentum directions for $l=2$. These cones are similar to the cones of precession of a gyroscope, and represent possible directions for the angular momentum vector. The z component is arbitrarily chosen as the one component that can have a definite value.

Figure by MIT OpenCourseWare.

An electron in a central potential (I)

$$
\begin{aligned}
& \hat{H}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V\left(\nabla^{2}\right) \quad \nabla^{2} \text { needs to be in spherical coordinates } \\
& \hat{H}=-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{\left.r^{2} \sin ^{2} \vartheta \frac{\partial^{2}}{\partial \varphi^{2}}\right]+V(r)}\right. \\
& \hat{H}=-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{\hat{L}^{2}}{\hbar^{2} r^{2}}\right]+V(r)
\end{aligned}
$$

An electron in a central potential (II) $n l^{2}(v, y]$ $\hat{H}=-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+\frac{L^{2}}{2 \mu r^{2}}+V(r)$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+\frac{\hbar^{2}}{2 \mu} \frac{l(l+1)}{r^{2}}+V(r)\right] R_{n l}(r)=E_{n l} R_{n l}(r)
$$

An electron in a central potential (III)

$$
\begin{gathered}
\xrightarrow[u_{n l}(r)]{ }=\underline{\underline{r R_{n l}(r)} \quad V_{e f f}(r)=\frac{\hbar^{2}}{2 \mu} \frac{l(l+1)}{r^{2}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}} \\
{\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V_{e f f}(r)\right] u_{n l}(r)=E_{n l} u_{n l}(r)}
\end{gathered}
$$

What is the $\mathrm{V}_{\text {eff }}(\mathrm{r})$ potential ?

Figure by MIT OpenCourseWare.

The Radial Wavefunctions for Coulomb V(r)

Figures by MIT OpenCourseWare.
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

R_{20}

R_{30}

Radial functions $R_{n l}(r)$ and radial distribution functions $r^{2} R^{2}{ }_{n l}(r)$ for atomic hydrogen. The unit of length is $a_{\mu}=(m / \mu) a_{0}$, where a_{0} is the first Bohr radius.

The Grand Table

Shell	Quantum numbers			Spectroscopic notation	Wave function $\Psi_{n l m}(\mathrm{r}, \theta, \phi)$
K	1	0	0	1 s	$\frac{1}{\sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2} \exp \left(-\mathrm{Zr} / \mathrm{a}_{0}\right)$
L	2 2 2	1 1	$\begin{array}{r} 0 \\ 0 \\ \pm 0 \end{array}$	2 s $2 \mathrm{p}_{0}$ $2 \mathrm{p}_{ \pm 1}$	$\begin{aligned} & \frac{1}{2 \sqrt{2 \pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(1-\mathrm{Zr} / 2 \mathrm{a}_{0}\right) \exp \left(-\mathrm{Zr} / \mathrm{a}_{0}\right) \\ & \frac{1}{4 \sqrt{2 \pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(\mathrm{Zr} / \mathrm{a}_{0}\right) \exp \left(-\mathrm{Zr} / 2 \mathrm{a}_{0}\right) \cos \theta \\ & \mp \frac{1}{8 \sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(\mathrm{Zr} / \mathrm{a}_{0}\right) \exp \left(-\mathrm{Zr} / 2 \mathrm{a}_{0}\right) \sin \theta \exp (\pm i \phi) \end{aligned}$
M	3 3 3 3 3 3	0 1 1 2 2 2	$\begin{array}{r} 0 \\ 0 \\ \pm 1 \\ 0 \\ \pm 1 \\ \pm 2 \end{array}$	3s $3 p_{0}$ $3 p_{ \pm 1}$ $3 d_{0}$ $3 d_{ \pm 1}$ $3 d_{ \pm 2}$	$\begin{aligned} & \frac{1}{3 \sqrt{3 \pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(1-2 \mathrm{Zr} / 3 \mathrm{a}_{0}+2 \mathrm{Z}^{2} \mathrm{r}^{2} / 27 \mathrm{a}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right) \\ & \frac{2 \sqrt{2}}{27 \sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(1-\mathrm{Zr} / 6 \mathrm{a}_{0}\right)\left(\mathrm{Zr} / \mathrm{a}_{0}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right) \cos \theta \\ & \mp \frac{2}{27 \sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(1-\mathrm{Zr} / 6 \mathrm{a}_{0}\right)\left(\mathrm{Zr} / \mathrm{a}_{0}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right) \sin \theta \exp (\pm i \phi) \\ & \frac{1}{81 \sqrt{6 \pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(\mathrm{Z}^{2} \mathrm{r}^{2} / \mathrm{a}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right)\left(3 \cos ^{2} \theta-1\right) \\ & \mp \frac{1}{81 \sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(\mathrm{Z}^{2} \mathrm{r}^{2} / \mathrm{a}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right) \sin \theta \cos \theta \exp (\pm i \phi) \\ & \frac{1}{62 \sqrt{\pi}}\left(\mathrm{Z} / \mathrm{a}_{0}\right)^{3 / 2}\left(\mathrm{Z}^{2} \mathrm{r}^{2} / \mathrm{a}\right) \exp \left(-\mathrm{Zr} / 3 \mathrm{a}_{0}\right) \sin ^{2} \theta \exp (\pm 2 i \phi) \end{aligned}$

The complete normalised hydrogenic wave functions corresponding to the first three shells, for an 'infinitely heavy' nucleus. The quantity $\mathrm{a}_{0}=4 \pi \varepsilon_{0} h^{2} / m e^{2}$ is the first Bohr radius. In order to take into account the reduced mass effect one should replace a_{0} by $\mathrm{a}_{\mu}=\mathrm{a}_{0}(\mathrm{~m} / \mu)$

Solutions in the central Coulomb Potential: the Alphabet Soup

http://www.orbitals.com/orb/orbtable.htm

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Courtesy of David Manthey. Used with permission.
Source: http://www.orbitals.com/orb/orbtable.htm.

