MIT OpenCourseWare
http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 - Lecture 2

More practical info

- Problem sets - out on Wed (and posted on Stellar), due by 5 pm of the following weekerfd (after that 75\%, after Thu 5pm 50\%, after Fri 5pm 25\%)
- ~11 in total, 30% of the grade
- Sometimes I mention homework - it's not the "Problem Set" @ Poilvert, Bonnet

Homework

- Take notes
- Revise posted lecture
- Study posted or assigned material (TEXTBOOKS - do you have them ?)
- Meet with TAs or Instructor:

Marzari Office Hours - Monday 4-5 pm
Poilvert Office Hours - Tuesday 4-5pm

Last time: Wave mechanics

1. Particles, fields, and forces
2. Dynamics - from Newton to Schroedinger
3. De Broglie relation $\lambda \bullet p=h$
4. Waves and plane waves
5. Harmonic oscillator

Time-dependent Schrödinger's equation
 (Newton's $2^{\text {nd }}$ law for quantum objects)

1925-onwards: E. Schrödinger (wave equation), W. Heisenberg (matrix formulation), P.A.M. Dirac (relativistic)

Plane waves as free particles

Our free particle $\Psi(\vec{r}, t)=A \exp [i(\vec{k} \cdot \vec{r}-\omega t)]$ satisfies the wave equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\vec{r}, t)=i \hbar \frac{\partial \Psi(\vec{r}, t)}{\partial t} \quad \text { (provided } \quad E=\hbar \omega=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m} \text {) }
$$

Stationary Schrödinger's Equation (I)

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\vec{r}, t)+V(\vec{r}, *) \Psi(\vec{r}, t)=i \hbar \frac{\partial \Psi(\vec{r}, t)}{\partial t} \\
\Psi(\vec{r}, t)=\text { ANSATE } \varphi(\vec{r}) f(t) \\
-\frac{\hbar^{2}}{2 m} \nabla^{2}(\varphi f)+V(\vec{r}) \varphi f=i \hbar \frac{\partial(\varphi t)}{\partial t} \\
-\frac{\hbar^{2}}{2 m} f \nabla^{2} \varphi+V \varphi f=i \hbar \varphi \frac{\partial f}{\partial t} / \varphi f
\end{gathered}
$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

$$
\begin{aligned}
& \underbrace{-\frac{\hbar^{2} \sigma^{2} \varphi}{2 m}+V}_{\vec{r}}=\underbrace{f \frac{1}{\varphi} \frac{\partial f}{\partial t}}_{f}=\cdots \\
& =\operatorname{ConsiAAT}=E \\
& -\frac{\hbar^{2}}{2 m} \frac{\nabla^{2} \varphi}{\varphi}+V=E \quad i \hbar f^{\prime} \frac{\partial f}{f}=E
\end{aligned}
$$

Stationary Schrödinger's Equation (II)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Stationary Schrödinger's Equation (III)

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r})\right] \varphi(\vec{r})=E \varphi(\vec{r})
$$

1. It's not proven - it's postulated, and it is confirmed experimentally
2. It's an "eigenvalue" equation: it has a solution only for certain values (discrete, or continuum intervals) of E
3. For those eigenvalues, the solution ("eigenstate", or "eigenfunction") is the complete descriptor of the electron in its equilibrium ground state, in a potenitial $\mathrm{V}(\mathrm{r})$.
4. As with all differential equations, boundary conditions must be specified
5. Square modulus of the wavefunction = probability of finding an electron

Free particle: $\Psi(x, t)=\phi(x) f(t)$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Infinite Square Well (II)

$$
\begin{aligned}
& \left(\left.(\sin k x)\right|_{x=a}=0\right. \\
& C \sin k a=0 \\
& k a=n \pi \quad n=0,+1,-2, \cdots
\end{aligned}
$$

Infinite Square Well (III)

Figures by MIT OpenCourseWare.

The power of carrots

- β-carotene

Physical Observables from Wavefunctions

- Eigenvalue equation:

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right] \varphi(x)=E \varphi(x)
$$

- Expectation values for the operator (energy)
$\lambda \mid W$

$$
E=\int \varphi^{*}(x)\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \varphi(x) d x \quad E=\frac{h^{2}}{\delta m}\left(\frac{n^{2}}{a^{2}}\right)
$$

Particle in a 2-dim box

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \varphi(x, y)=E \varphi(x, y) \\
& \varphi(x, y)=X(x) Y(y) \\
& -\frac{\hbar^{2}}{2 m} y \frac{\partial^{2} x}{\partial x}-\frac{\hbar^{2}}{2 m} \times \frac{\partial^{2} y}{\partial y^{2}}=E X y \\
& - \\
& \frac{\hbar^{2}}{2 m} \frac{1}{2 m} \frac{\partial^{2} x}{\partial n_{323}^{2}}=E=-\frac{\hbar^{2}}{2 m} \frac{1}{\lambda^{2}} \frac{\partial^{2} y}{\partial y^{2}}
\end{aligned}
$$

Particle in a 2-dim box

$$
\varphi(x, y)=C \sin \left(\frac{l \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right)
$$

$$
E=\frac{h^{2}}{8 m}\left(\frac{l^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right)
$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

$$
\begin{gathered}
\text { Particle in a 3-dim box } \\
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \varphi(x, y, z)=E \varphi(x, y, z)
\end{gathered}
$$

Particle in a 3-dim box: Farbe defect in halides (e^{-}bound to a negative ion vacancy)

From Carl Zeiss to MIT...

Text removed due to copyright restrictions. Please see
Avakian, P., and Smakula, A. "Color Centers in Cesium Halide Single Crystals."
Physical Review 120 (December 1960): 2007.

Light absorption/emission

Courtesy M. Bawendi and Felice Frankel.
Used with permission.
MIT Research: Bawendi, Mayes, Stellacci
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Image and text removed due to copyright restrictions. Please see: Abstract and Fig. 1 in Willey, T. M., et al. "Molecular Limits to the Quantum Confinement Model in Diamond Clusters." Physical Review Letters 95 (2005): 113401.

Metal Surfaces (I)

$\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right] \varphi(x)=E \varphi(x)$

Metal Surfaces (II)

Figure by MIT OpenCourseWare.
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Scanning Tunnelling Microscopy

Figure by MIT OpenCourseWare.

Scanning Tunnelling Microscopy, cont.

$$
\begin{aligned}
& \mathrm{I} / \mathrm{V} \propto \rho \mathrm{e}^{-2 \kappa s} \\
& \kappa=\left(\frac{2 \mathrm{~m} \phi}{\hbar^{2}}\right)^{1 / 2}=1.1 \AA^{-1} \\
& \rho=\text { density of states }
\end{aligned}
$$

Wavepacket tunnelling through a nanotube

http://newton.phy.bme.hu/education/schrd/index.html
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)
http://www.quantum-physics.polytechnique.fr

