3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 1 WAVES ME(HANI(S

Courtesy of Jon Sullivan, http://pdphoto.org

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

The 3.23 Team

- Lectures
- Recitations

Nicola Marzari (Instructor)
David Paul (I, Magnetic)
Nicolas Poilvert (TA, Electronic)
Nicephore Bonnet (TA, Optical/Magn)

Roadmap

- •Sep 6. From particles to waves: the Schrödinger equation
- •Sep 11. The mechanics of quantum mechanics: operators, expectation values
- •Sep 13. Measurements and probabilities. The harmonic oscillator.
- •Sep 18. The hydrogen atom and the periodic table
- •Sep 20. Periodicity and phonons
- •Sep 25. Electrons in a lattice: Bloch's theorem
- •Sep 27. The nearly-free electron model
- Oct 2. The tight-binding model. Band structures
- •Oct 4. Semiconductors and insulators
- •Oct 11. Band structure engineering
- Oct 16. Transport of heat and electricity
- •Oct 18. Inhomogeneous and hot carriers in semiconductors
- •Oct 23. Mid-term exam (during class, 1:30 hours)
- •Oct 25. The p-n diode

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Roadmap

- Oct 30. Optical materials and refractive index
- •Nov 1. Electromagnetism in dielectric media
- •Nov 6. Classic propagation of waves
- •Nov 8. Interband absorption
- •Nov 13. Fundamental of ferromagnetic materials
- •Nov 15. Hysteresis loop and driving energies
- •Nov 20. Hard materials and permanent magnets
- Nov 27. Soft materials: thin films and nanoparticles. Spintronics and GMR
- •Nov 29. Spin valves, spin switches, and spin tunneling
- •Dec 4. Excitons
- •Dec 6. Luminescence
- Dec 11. Semiconductor quantum wells
- Dec 17 Dec 21: Final exam (3 hours, date will be fixed by Schedules' office)

DO NOT BOOK YOUR FLIGHTS YET!

Grading: Exams, Problem Sets

- 30% Problem Sets
- 30% Mid-term Exam (Oct 23)
- 40% Final Exam (Final's week Dec 17-21)
- Exams are not "open book", but you can bring one 2-sided, Letter-sized sheet of mnemonic aids
- For the exams, you'll probably need a very basic calculator

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Academic Integrity

Collaboration Policy for 3.23 - Fall Term 2007

Before preparing your problem set, you are welcome to discuss it with your fellow students.

Data and figures may not be shared.

All writing in in a problem set must be original: do not copy any portion from reference material or the problem sets of other students, previous or current.

Textbooks

The class is based on these two **required** textbooks:

John Singleton

Band Theory and Electronic Properties of Solids

Paperback, Oxford University Press (2001) ISBN-10: 0198506449, ISBN-13: 978-0198506447

Mark Fox

Optical Properties of Solids

Paperback, Oxford University Press (2001)
ISBN-10: 0198506120, ISBN-13: 978-0198506126
(Errata can be found at www.mark-fox.staff.shef.ac.uk/ops errata.html)

These can be found at any academic bookstore. They are also available from Oxford University Press (www.oup.com). Last, www.addall.com is a very good site to compare prices across

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Other Textbooks

Hayden Reserves

- Stephen Blundell Magnetism in Condensed Matter, Oxford University Press
- Ashcroft and Mermin Solid-state physics
- Charles Kittel Introduction to solid-state physics (Wiley)

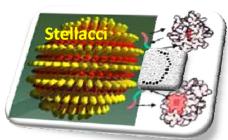
Other

- Bransden & Joachain Quantum Mechanics (2nd ed), Prentice Hall (2000)
- Bransden & Joachain Physics of Atoms and Molecules (2nd ed)

Life at MIT (@ Prof Fink)

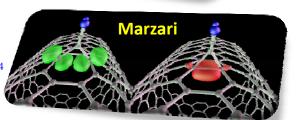
- Your experience should be wonderful and enjoyable (when averaged appropriately ⁽³⁾)
- Finding an advisor (junior vs. senior, work style, group members, resources...)
- You can change the world! (It might require some work)
- Are you stuck? Unhappy? Making progress? Is it only you?
- What if things don't work out initially ? (what are your options)
- Have a life (friends, home, gym, travel, music, museums...)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)


Materials Breakthroughs (so 20th century...)

- Steel and cement building and engines
- Aluminum alloys air transportation
- Polymers safe packaging, medical materials
- Silicon computing
- Cobalt alloys data storage
- Silica fibers communications
- Transition-metal alloys catalytic converters

Advanced Materials


Image removed due to copyright restrictions.

Please see http://mit-pbg.mit.edu/img/NatureFiberWeb.jpg.

Courtesy Francesco Stellacci. Used with permission.

Image removed due to copyright restrictions. Please see any image of the microstructure of nacre, such as http://www.cas.org/ASSETS/E332CE654 DC544398C837B46C102CA9D/abalone%20-%20200.jpg.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Courtesy Nicola Marzari and Young-Su Lee. Used with permission.

Physical Origin of Material Properties

Courtesy flickr user dymero.

Image removed due to copyright restrictions.Please see: Fig. 12 in
Landman, Uzi, et al. "Factors in Gold Nanocatalysis: Oxidation of
CO in the Non-scalable Size Regime." *Topics in Catalysis* 44 (June 2007): 145-158.

U. Landman @ Georgia Tech

From Classical to Quantum

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Round Up the Usual Suspects

- Particles and electromagnetic fields
- Forces
- Dynamics

Particles and Fields

- Electrons
- Nuclei (protons, neutrons)

Image removed due to copyright restrictions.

Please see http://www.cpepweb.org/images/chart_details/Structure.jpg.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Particles and Fields

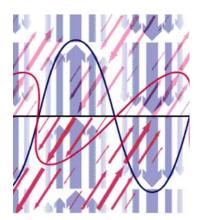
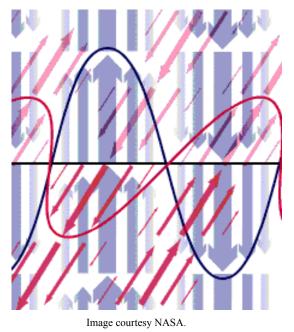



Image courtesy NASA.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Forces

- Electromagnetic interactions
- (Gravity, electroweak, strong)

Dynamics of a Particle

$$m\frac{d^2\vec{r}}{dt^2} = F(\vec{r}) \longrightarrow \vec{v}(t)$$

The sum of the kinetic and potential energy (E=T+V) is conserved

Image from the Open Clip Art Library, http://openclipart.org

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Dynamics of a Particle

$$m\frac{d^2\vec{r}}{dt^2} = F(\vec{r}) \longrightarrow \vec{v}(t)$$

The sum of the kinetic and potential energy (E=T+V) is conserved

Electromagnetic Waves / Photons

$$E = hv = h\frac{c}{\lambda} = kT$$

h is Planck's constant = 6.626 10^{-34} J s k is Boltzmann's constant = 1.381 10^{-23} J/K

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

THE ELECTROMAGNETIC SPECTRUM

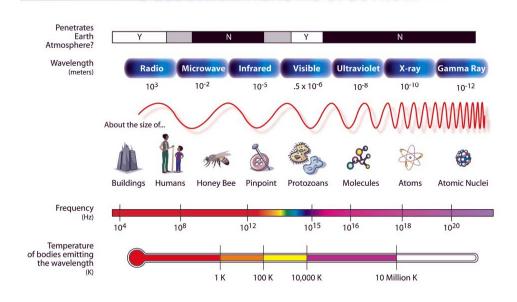


Image courtesy NASA.

Examples: http://imagers.gsfc.nasa.gov/ems/ems.html

Standard Model of Matter

 Atoms are made by massive, point-like nuclei (protons+neutrons)

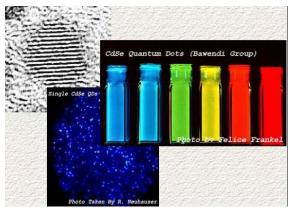
Image removed due to copyright restrictions. Please see http://static.howstuffworks.com/gif/atom-quantum.jpg

- Surrounded by tightly bound, rigid shells of core electrons
- Bound together by a glue of valence electrons (gas vs. atomic orbitals)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Material Properties From First-Principles

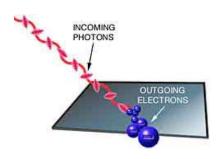
- Energy at our living conditions (300 K): 0.04 eV (kinetic energy of an atom in an ideal gas).
- Differences in bonding energies are within one order of magnitude of 0.29 eV (hydrogen bond).
- Binding energy of an electron to a proton (hydrogen):
 13.6058 eV = 0.5 atomic units (a.u)
- Everything, from the muscles in our hands to the minerals in our bones is made of atomic nuclei and core electrons bonded together by valence electrons (standard model of matter)

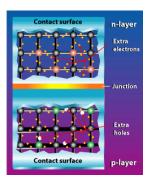

Why do we need quantum mechanics?

Structural properties (fracture in silicon)

Images removed due to copyright restrictions. Please see Fig. 1 and 3 in Pérez, Rubén, and Peter Gumbsch. "Directional Anisotropy in the Cleavage Fracture of Silicon." *Physical Review Letters* 84 (June 5, 2000): 5347-5350.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)


Electronic, optical, magnetic properties

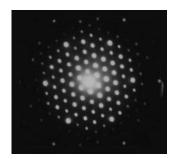


Courtesy of Prof. M. Bawendi and Felice Frankel. Used with permission.

Wave-particle Duality

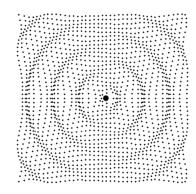
- Waves have particle-like properties:
 - Photoelectric effect: quanta (photons) are exchanged discretely
 - Energy spectrum of an incandescent body looks like a gas of very hot particles

Courtesy Physics 2000, http://www.colorado.edu/physics/2000/cover.html. Used with permission.


Image courtesy US Dept. of Energy.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

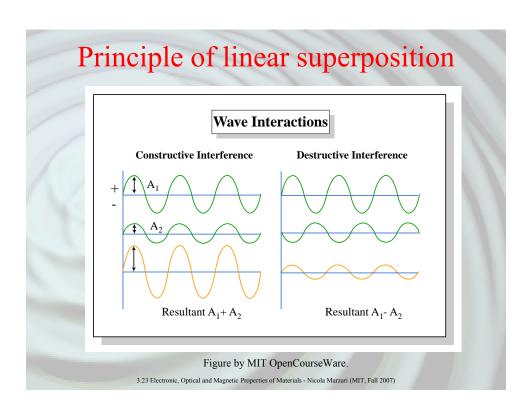
Wave-particle Duality


- Particles have wave-like properties:
 - Quantum mechanics: Electrons in atoms are standing waves – just like the harmonics of an organ pipe
 - Electrons beams can be diffracted, and we can see the fringes (Davisson and Germer, at Bell Labs in 1926...)

Courtesy of flickr user holisticgeek.

Description of a Wave

The wave is an excitation (a vibration): We need to know the amplitude of the excitation at every point and at every instant


$$\Psi = \Psi(\vec{r}, t)$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Description of a Wave

The wave is an excitation (a vibration): We need to know the amplitude of the excitation at every point and at every instant

$$\Psi = \Psi(\vec{r}, t)$$

Interference in Action

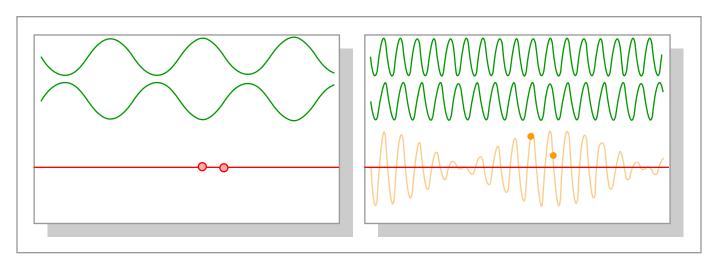
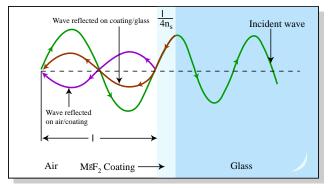
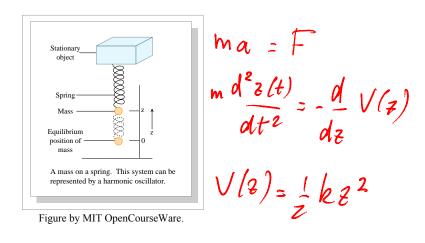



Figure by MIT OpenCourseWare.

Interference in Action



Images removed due to copyright restrictions.

Figure by MIT OpenCourseWare.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Harmonic Oscillator (I)

Harmonic Oscillator (II)

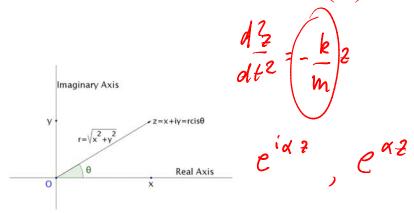


Image from Wikimedia Commons, http://commons.wikimedia.org.

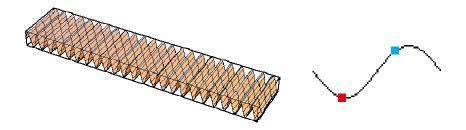
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Harmonic Oscillator (III)

Image removed due to copyright restrictions.

Please see any graph of harmonic oscillator position and velocity, such as http://commons.wikimedia.org/wiki/File:HarmOsc2.png.

The total energy of the system


• Kinetic energy K

• Potential energy V

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

A Traveling "Plane" Wave

$$\Psi(\vec{r},t) = A \exp[i(\vec{k} \cdot \vec{r} - \omega t)]$$

When is a particle like a wave?

Wavelength • momentum = Planck

Image of a double-slit experiment simulation removed due to copyright restrictions. Please see "Double Slit Experiment." in *Visual Quantum Mechanics*.

$$\lambda \bullet p = h$$

(h = $6.626 \times 10^{-34} \text{ J s} = 2\pi \text{ a.u.}$)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Time-dependent Schrödinger's equation

(Newton's 2nd law for quantum objects)

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) = i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$

1925-onwards: E. Schrödinger (wave equation), W. Heisenberg (matrix formulation), P.A.M. Dirac (relativistic)

Plane waves as free particles

Our free particle $\Psi(\vec{r},t) = A \exp[i(\vec{k}\cdot\vec{r}-\omega t)]$ satisfies the wave equation:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) = i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t} \quad \text{(provided } E = \hbar\omega = \frac{p^2}{2m} = \frac{\hbar^2k^2}{2m}\text{)}$$