MIT OpenCourseWare
|http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of Materials

Fall 2007

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

3.23 Fall 2007 - Lecture 7 ONE BLOCH AT A TIME

Last time

1. Vector space (expectation values measure the projection on different eigenvectors)
2. Eigenvalues and eigenstates as a linear algebra problem
3. Variational principle
4. Its application to a H atom (atomic units)
5. Hamiltonian for a molecular system; bonding and antibonding states
6. Potential energy surface of a molecule
7. Vibrations at equilibrium; quantum harmonic oscillator

Study

- Chapter 2 of Singleton textbook - "Band theory and electronic properties of solids"

Dynamics, Lagrangian style

- First construct $L=T-V$
- Then, the equations of motion are given by

- Why ? We can use generalized coordinates. Also, we only need to think at the two scalar functions T and V

Newton's second law, too

- 1-d, 1 particle: $\mathrm{T}=1 / 2 \mathrm{mv}^{2}, \mathrm{~V}=\mathrm{V}(\mathrm{x})$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0
$$

$$
\frac{d}{d t}\left(\frac{\partial\left(\frac{1}{2} m \dot{x}^{2}\right)}{\partial \dot{x}}\right)+\frac{\partial V}{\partial x}=0 \Longleftrightarrow \frac{d}{d t}(m \dot{x})=-\frac{\partial V}{\partial x}
$$

Hamiltonian

- We could use it to derive Hamiltonian dynamics (twice the number of differential equations, but all first order). We introduce a Legendre transformation

$$
\begin{gathered}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}} \quad H(q, p, t)=\sum_{i} \dot{q}_{i} p_{i}-L(q, \dot{q}, t) \\
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad-\dot{p}_{i}=\frac{\partial H}{\partial q_{i}}
\end{gathered}
$$

1-dimensional monoatomic chain

Properties

- Unique solutions for k in the first BZ
u_{s+1}
- Phase velocity and group velocity

Properties

- Standing waves
- Long wavelength limit

Ring geometry

1-dimensional diatomic chain

III. Equations of motion

$$
\begin{aligned}
& M \frac{d^{2} u_{1, s}}{d t^{2}}=K\left(u_{2, s}-u_{1 s}\right)+G\left(u_{2,-1}-u_{1, s}\right) \\
& M \frac{d^{2} u_{2, s}}{d t^{2}}=K\left(u_{1, s}-u_{2, s}\right)+G\left(u_{1,+1}-u_{2, s}\right)
\end{aligned}
$$

IV. Solutions

$$
u_{1 s}=u_{1} e^{i s s a} e^{-i a t}, u_{2 s}=u_{2} e^{i s s a} e^{-i s t}
$$

V. Dispersion relations

$$
\begin{aligned}
& \left(M \omega^{2}-(K+G)\right) u_{1}+\left(K+G e^{-i k}\right) u_{2}=0 \\
& \left(K+G e^{i k a}\right) u_{1}+\left(M \omega^{2}-(K+G)\right) u_{2}=0
\end{aligned}
$$

The homogenous linear equations have a solution only if the determinant of the coefficients is zero:

$$
\left|\begin{array}{cc}
\left(M \omega^{2}-(K+G)\right) & \left(K+G e^{-i k a}\right) \\
\left(K+G e^{i k a}\right) & \left(M \omega^{2}-(K+G)\right)
\end{array}\right|=0
$$

with solutions:

$$
\begin{gathered}
\omega^{2}=\frac{K+G}{M} \pm \frac{1}{M} \sqrt{K^{2}+G^{2}+2 K G \cos k a} \\
\frac{u_{1}}{u_{2}}=\mp \frac{K+G e^{-i k a}}{\left|K+G e^{i k a}\right|}
\end{gathered}
$$

for each k there are two solutions which are called the two branches of the dispersion curves.

Please replace with the credit line: Image removed due to copyright restrictions.
Please see Fig. 22.10 in Ashcroft, Neil W., and N. David Mermin. Solid State Physics. Belmont, CA: Brooks/Cole, 1976. ISBN: 9780030839931.

Translational Symmetry

Figure by MIT OpenCourseWare.

Bravais Lattices

- Infinite array of points with an arrangement and orientation that appears exactly the same regardless of the point from which the array is viewed.

$$
\begin{aligned}
& \vec{R}=l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3} \quad 1, m \text { and } n \text { integers } \\
& \vec{a}_{1}, \vec{a}_{2} \text { and } \vec{a}_{3} \text { primitive lattice vectors }
\end{aligned}
$$

- 14 Bravais lattices exist in 3 dimensions (1848)
- M. L. Frankenheimer in 1842 thought they were 15 . So, so naïve...
it Bravais lattices

Figure by MIT OpenCourseWare.

Symmetry

- Symmetry operations: actions that transform an object into a new but undistinguishable configuration
- Symmetry elements: geometric entities (axes, planes, points...) around which we carry out the symmetry operations

Figure 17.1b

Figure by MIT OpenCourseWare.

Symmetry elements and their corresponding operations

Symmetry elements		Symmetry operations	
E	Identity	E	leave molecule unchanged
C_{n}	n-Fold rotation axis	$\hat{\mathrm{C}}_{\mathrm{n}}, \hat{\mathrm{C}}_{\mathrm{n}}^{2}, \ldots ., \hat{\mathrm{C}}_{\mathrm{n}}^{\mathrm{n}}$	rotate about axis by $360^{\circ} / \mathrm{n} 1,2, \ldots ., \mathrm{n}$ times (indicated by superscript)
σ	Mirror plane	$\hat{\sigma}$	reflect through the mirror plane
i	Inversion center	$\hat{\mathrm{i}}$	$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(-\mathrm{x},-\mathrm{y},-\mathrm{z})$
S_{n}	n-Fold rotation-reflection axis	$\hat{\mathrm{S}}_{\mathrm{n}}$	rotate about axis by $360^{\circ} / \mathrm{n}$, and reflect through a plane perpendicular to axis.

Figure by MIT OpenCourseWare.

siountarar．

A group G is a finite or infinite set of elements A, B, C ， D．．．together with an operation＂ゆ्र＂that satisfy the four properties of：

1．Closure：If A and B are two elements in G ，then A is also in G．

2．Associativity：For all elements in $G,(A-B)$（ $C==A$
3．Identity：There is an identity element I such that IDA＝A次＝A for every element A in G ．

4．Inverse：There is an inverse or reciprocal of each element． Therefore，the set must contain an element $B=\operatorname{inv}(A)$ such that $A=\cos \operatorname{inv}(A)=\operatorname{inv}(A)$ 次 $A=1$ for each element of G ．

Examples

- Integer numbers, and addition
- Integer numbers, and multiplication
- Real numbers, and multiplication
- Rotations around an axis by 360/n

Figure by MIT OpenCourseWare.

Figures by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

The 4 symmetry operations of $\mathrm{H}_{2} \mathrm{O}$ form a group (called $\mathrm{C}_{2 \mathrm{v}}$)

1. Closure: $\mathrm{A} \geqslant \mathrm{B} \mathrm{B}$ is also in G .

2. Identity: I
3. Inverse: $A=\operatorname{inv}(A)=\operatorname{inv}(A)$

Second Operation	First Operation			
	E	\hat{C}_{2}	$\hat{\sigma}_{v}$	$\hat{\sigma}_{v}^{\prime}$
E	E	\hat{C}_{2}	$\hat{\sigma}_{v}$	σ_{v}
\hat{C}_{2}	\hat{C}_{2}	E	$\sigma^{\hat{\prime}}{ }_{v}$	$\hat{\sigma}_{v}$
$\hat{\sigma}_{v}$	$\hat{\sigma}_{v}$	$\hat{\sigma}_{v}^{\prime}$	E	\hat{C}_{2}
$\hat{\sigma}_{\mathrm{v}}$	$\hat{\sigma}_{v}^{\prime}$	$\hat{\sigma}_{v}$	\hat{C}_{2}	E

Figure by MIT OpenCourseWare.

Ten crystallographic point groups in 2d

Figure by MIT OpenCourseWare.

32 crystallographic point groups in 3d

The Crystallographic Point Groups and the Lattice Types.

Crystal System	$\begin{aligned} & \text { Schoenflies } \\ & \text { Symbol } \end{aligned}$	Hermann-Mauguin Symbol	Order of the group	Laue Group
Triclinic	C_{1}	1	12	$\overline{1}$
	C_{i}	$\overline{1}$		
Monoclinic	C2C_{5}	2	2	$2 / m$
		m	2	
	$\mathrm{C}_{2 \mathrm{~h}}$	2/m	4	mmm
Orthorhombic	D_{2}	222	4	
	$\mathrm{C}_{2} \mathrm{v}$	mm2		
	$\mathrm{D}_{2 \mathrm{~h}}$	mmm	8	4/m
Tetragonal	C_{4}	4	4	
	S_{4}	$\overline{4}$	4	
	$\mathrm{C}_{4 \mathrm{~h}}$	4/m	8	4/m mm
	D_{4}	422	8	
	$\mathrm{C}_{4 \mathrm{v}}$	4 mm	8	
	$\mathrm{D}_{2 \mathrm{~d}}$	$\overline{4} 2 m$	8	
	D_{4}	$4 / \mathrm{mmm}$	16	
Trigonal	C$\mathrm{C}_{3 \mathrm{i}}$	3	3	$\overline{3}$
		3	6	
	D_{3}	32	6	$\overline{3} m$
	$\mathrm{C}_{3 \mathrm{v}}$	3 m	6	
	$\mathrm{D}_{3 \mathrm{~d}}$	$\overline{3} m$	12	
Hexagonal	C_{6}	6	6	
	$\mathrm{C}_{3 \mathrm{~h}}$	$\overline{6}$	612	6/m
	C_{6}	6/m		
	D_{6}	622	12	
	$\mathrm{C}_{6 \mathrm{v}}$	6 mm	12	
	$\mathrm{D}_{3 \mathrm{~h}}$	$\overline{6} m 2$	12	6/m mm
	D_{6}	$6 / \mathrm{mmm}$	24	$m \overline{3}$
	T	23	12	
Cubic	$\mathrm{T}_{\mathrm{h}}^{\mathrm{O}}$	$m \overline{3}$	24	
		432	24	$m \overline{3} m$
	T_{d}	$4 \overline{3} m$	24	
	O_{h}	$m \overline{3} m$	48	

(1) Each component in the name refers to a different direction. For example, the symbol for the orthorhombic group, 222, refers to the symmetry around the x, y, and z axes, respectively.
(2) The position of the symbol m indicates the direction perpendicular to the mirror plane.
(3) Fractional symbols mean that the axes of the operators in the numerator and denominator are parallel. For example, $2 / m$ means that there is a mirror plane perpendicular to a rotation diad.
(4) For the orthorhombic system, the three symbols refer to the three mutually perpendicular x, y, and z axes, in that order.
(5) All tetragonal groups have a 4 or $\overline{4}$ rotation axis in the z-direction and this is listed first. The second component refers to the symmetry around the mutually perpendicular x and y axes and the third component refers to the directions in the $x-y$ plane that bisect the x and y axes.
(6) In the trigonal systems (which always have a 3 or $\overline{3}$ axis first) and hexagonal systems (which always have a 6 or $\overline{6}$ axis first), the second symbol describes the symmetry around the equivalent directions (either 120° or 60° apart) in the plane perpendicular to the $3, \overline{3}, 6$, or $\overline{6}$ axis.
(7) A third component in the hexagonal system refers to directions that bisect the angles between the axes specified by the second symbol.
(8) If there is a 3 in the second position, it is a cubic point group. The 3 refers to rotation triads along the four body diagonals of the cube. The first symbol refers to the cube axis and the third to the face diagonals.

Crystal Structure $=$ Lattice + Basis

Basis

Crystal Structure $=$ Lattice + basis

Figure by MIT OpenCourseWare.

Primitive unit cell and conventional unit cell

Figure by MIT OpenCourseWare.

Periodic boundary conditions for the ions (i.e. the ext. potential)

- Unit cell = Bravais lattice = space filler
- Atoms in the unit cell + infinite periodic replicas

Reciprocal lattice (I)

- Let's start with a Bravais lattice, defined in terms of its primitive lattice vectors...

$$
\vec{R}=l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3}
$$

l, m, n integer numbers
$\vec{R}=(l, m, n)$

Reciprocal lattice (II)

- ...and then let's take a plane wave

$$
\Psi(\vec{r})=A \exp [i(\vec{G} \cdot \vec{r})]
$$

Reciprocal lattice (III)

- What are the wavevectors for which our plane wave has the same amplitude at all lattice points ?

$$
\begin{aligned}
& \exp [i(\vec{G} \cdot \vec{r})]=\exp [i(\vec{G} \cdot(\vec{r}+\vec{R}))] \\
& \exp [i(\vec{G} \cdot \vec{R})]=1 \\
& \exp \left[i\left(\vec{G} \cdot\left(l \vec{a}_{1}+m \vec{a}_{2}+n \vec{a}_{3}\right)\right)\right]=1
\end{aligned}
$$

\vec{a}_{1}, \vec{a}_{2} and \vec{a}_{3} define the primitive unit cell

$$
\vec{G}_{i} \cdot \vec{a}_{j}=2 \pi \delta_{i j}
$$

\vec{G}_{1}, \vec{G}_{2} and \vec{G}_{3} define the

Reciprocal lattice (IV)

$\vec{G}_{i} \cdot \vec{a}_{j}=2 \pi \delta_{i j} \quad \mathrm{n}$ integer is satisfied by
$\vec{G}=h \vec{b}_{1}+i \vec{b}_{2}+j \vec{b}_{3}$ with h, i, j integers,
provided $\vec{b}_{1}=2 \pi \frac{\vec{a}_{1} \times \bar{a}_{3}}{\bar{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)} \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\bar{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)} \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\bar{a}_{1}\left(\overrightarrow{a_{2}} \times \bar{a}_{3}\right)}$
$\vec{G}=(h, i, j)$ are the reciprocal-lattice vectors

Examples of reciprocal lattices

Direct lattice	Reciprocal lattice
Simple cubic	Simple cubic
FCC	BCC
BCC	$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}$
Orthorhombic	Orthorhombic

