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•

Last time 

1. Explicit solution for the Bloch orbitals 

22. FFree ellecttrons 

3. Band structure of free electron vs. silicon 

4. Band edges 

5. Ψnk (r) is not a momentum eigenstate 

6. Group velocity, effective mass 

77. Fermi energy Fermi surface Fermi energy, Fermi surface 
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Explicit solution for the Bloch orbitals 
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•

What choice for a basis ? 

• For molecules: often atomic orbitals, or 
localized functions as Gaussians 

• For solids periodic functions such as sinesFor solids, periodic functions such as sines 
and cosines (plane waves) 

The plane waves basis set 

•	 Systematic improvement ofSystematic improvement of 
completeness/resolution 

•	 Huge number of basis elements – only possible 
because of pseudopotentials 

•	 Allows for easy evaluation of gradients and 
Laplacian 

•	 Kinetic energy in reciprocal space, potential in 
real space 

•	 Basis set does not depend on atomic positions: 
there are no Pulay terms in the forces 
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Hamiltonian in the Bloch 

representation
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Energy Bands 

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007) 

5 

-0.939

-0.539

X W L

Γ12

Γ25'

Γ1

Γ Κ

∆1

Ζ3

Ζ2

Α1

Σ1

Σ2 K2

K3

K1
K1

K4
Σ4 Σ1Σ3

Σ1

Α1
Α3

Α3

Α1

Ζ1Ζ3
Ζ4

Ζ1

∆2

∆5
∆2'

∆1

5 3

33
3 2'

2'

1 1

1

1'
2

Q_

Q+

Q+

Q+

Q_

Q_

Figure by MIT OpenCourseWare.



Brillouin Zone (fcc)
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The Fermi surface 
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Image from the Fermi Surface Database. Used with permission.
Please see: http://www.phys.ufl.edu/fermisurface/jpg/K.jpg,
http://www.phys.ufl.edu/fermisurface/jpg/Cu.jpg.
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The Fermi surface
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Energy of a collection of atoms 

ˆ ˆ ˆ ˆH T V  = +  +V +V −e e−e e−N  N N  

1 2 ˆ ⎡ r r ⎤ 1T̂ =− ∑∇i V N =∑ ∑  V (R − ri )⎥ V̂ 
e =∑∑  re e− ⎢ I e− r2 i i ⎣ I ⎦ i j>i | ri − rj | 

• Te: quantum kinetic energy of the electrons 

• Vee-ee: electron-electron interactions 

• Ve-N: electrostatic electron-nucleus attraction 
(electrons in the field of all the nuclei) 

• VN-N: electrostatic nucleus-nucleus repulsion 
3.23 Fall 2006 
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ˆ 

Molecules and Solids:

Electrons and Nuclei
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n R 
r 

1 R 
r 

N ) Etot (rr 1 
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n 
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1 
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• We treat only the electrons as quantum particles, in the 
field of the fixed (or slowly varying) nuclei 

• This is generically called the adiabatic or Born-
Oppenheimer approximation 

• “Adiabatic” means that there is no coupling between 
different electronic surfaces; “B-O” implies there is no 
influence of the ionic motion on one electronic surface 

3.23 Fall 2006 

Complexity of the many-body Ψ 

“…Some form of approximation is essential, and this would 
mean the construction of tables. The tabulation function of one 
variable requires a page, of two variables a volume and of three 
variables a library; but the full specification of a single wave 
function of neutral iron is a function of 78 variables. It would be 
rather crude to restrict to 10 the number of values of each 
variable at which to tabulate this function, but even so, full 
tabulation would require 1078 entries.” 
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•

Mean-field approach 

• Independent particle model (Hartree): each Independent particle model (Hartree): each 
electron moves in an effective potential, 

⎤ 
⎥
⎥⎦

representing the attraction of the nuclei 
and the average effect of the repulsive 
interactions of the other electrons 

• This average repulsion is the electrostatic 

repulsion of the average charge density of 

all other electrons 
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Hartree Equations 

The Hartree equations can be obtained directly from the variational 
principle, once the search is restricted to the many-body 
wavefunctions that are written – as above – as the product of single 
orbitals (i.e. we are working with independent electrons) 

ψ (r 
r 
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r 
n ) = ϕ1(r 
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•

The self-consistent field 

• The single-particle Hartree operator is self-
consistent ! It depends on the orbitals thatconsistent ! It depends on the orbitals that 
are the solution of all other Hartree equations 

• We have  n simultaneous integro-differential 
equations for the n orbitals 

• Solution is achieved iterativelyy 

⎡ 1 2 
r r r 2 1 r ⎤ r r− ∇ +  ( − +  )  |  ( ) |  r r ϕ ( )  = εϕ ( )r⎢ i ∑ I

V RI ri ∑∫ ϕ j j r r d j ⎥ i i  r i i  
⎢ 2 j i≠ | r r | ⎥⎣ j − i ⎦ 
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Iterations to self-consistency 

• Initial guess at the orbitalsInitial guess at the orbitals 
• Construction of all the operators 
• Solution of the single-particle pseudo-


Schrodinger equations

• With this new set of orbitals, construct the 

Hartree operators again 
• Iterate the procedure until it (hopefully) 


converges
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•

•

What’s missing 

• It does not include correlationIt does not include correlation 

• The wavefunction is not antisymmetric 

• It does remove  nl accidental degeneracy of 
the hydrogenoid atoms 
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Spin-Statistics 

• All elementary particles are either fermionsAll elementary particles are either fermions 
(half-integer spins) or bosons (integer) 

• A set of identical (indistinguishable) 

fermions has a wavefunction that is 

antisymmetric by exchange


r r r r r r r r r rψ ( 1, 2 ,..., rj ,..., rk ,..., rn ) = −ψ ( 1, 2 ,..., rk ,..., rj ,..., rn )r r  r r  

• For bosons it is symmetric 

3.23 Fall 2006 
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ψ

•

Slater determinant 

•	 An antisymmetric wavefunction is constructed via a 
Slater determinant of the individual orbitals (insteadSlater determinant of the individual orbitals (instead 
of just a product, as in the Hartree approach) 
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Pauli principle 

• If two states are identical If two states are identical, the determinantthe determinant 
vanishes (i.e. we can’t have two electrons 
in the same quantum state) 
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⎢ ⎥
⎡ ⎤

•

Hartree-Fock Equations

The Hartree-Fock equations are, again, obtained from the variational principle: we 
look for the minimum of the many-electron Schroedinger equation in the class of all 
wavefunctions that are written as a single Slater determinant 

ψ (r 
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3.23 Fall 2006 

Koopmans’ Theorems 

• Total energy is invariant under unitaryTotal energy is invariant under unitary

transformations


• It is not the sum of the canonical MO 

orbital energies


• Ionization energy, electron affinityy aregy, 
given by the eigenvalue of the respective 
MO, in the frozen orbitals approximation 
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•

• - -

What is missing 

• Correlations (by definition !)Correlations (by definition !) 
– Dynamical correlations: the electrons get too 

close to each other in H.-F. 
– Static correlations: a single determinant 

variational class in not good enough 

• Spin contamination: even if the energy is Spin contamination: even if the energy is 
correct (variational, quadratic) other 
properties might not (e.g. the UHF spin is 
an equal mixture of singlet and triplet) 
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Linear Combination of Atomic Orbitals 
•	 Most common approach to find out the ground-state solution – it 

allows a meaningful definition of “hybridization”, “bonding” and 
“anti-bonding” orbitals. 

•	 Also knows as LCAO LCAO-MO (for molecular orbitals) or tight-Also knows as LCAO, LCAO MO (for molecular orbitals), or tight 
binding (for solids) 

•	 Trial wavefunction is a linear combination of atomic orbitals – the 
variational parameters are the coefficients: 

Ψ trial = ∑ c( 
I
nlm )Ψ ( 

I
nlm) (r 

r − R 
r 

I )
,( )I nlm  

ĤΨ trial Ψ trial ELCAO = min

Ψ trial
 Ψ trial 
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•

Hückel approach 

• Hückel: Planar / quasi planar systems with Hückel: Planar / quasi-planar systems with 
delocalized π bonding: two parameters 
– α: matrix element between same orbital 

– β: matrix element between neighboring orbitals 

– Hamiltonian between further neighbors is 0 
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Example: Benzene (C6H6) 
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=

Benzene – energy levels


⎛α − E β 0 0 0 β ⎞ 
⎜ β α − E β 0 0 0 ⎟ 
⎜ ⎟ 
⎜ 0 β α − E β 0 0 ⎟ 

det ⎜⎜ ⎟ = 00det ⎟ 
⎜ 0 0 β α − E β 0 ⎟ 
⎜ 0 0 0 β α − E β ⎟ 
⎜ ⎟⎜ ⎟
⎝ β 0 0 0 β α − E ⎠ 
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Benzene – molecular orbitals 
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Tight-binding (LCAO for solids) 

• HamiltonianHamiltonian H Hˆ == ˆ 
at + ∆  UÛ r 

r))H H + ∆  ((r 
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