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�	 � 

Homework # 4, solution 

October 12, 2007


Homework is due on Wednesday October 10th, 5pm 

1 Nodal surfaces in the hydrogen atom 

Draw the radial component of the 3s, 3p, and 3d orbitals for the hydrogen atom. 
For each of these orbitals, draw or describe the nodal surfaces and explain which 
ones are due to the radial component of the wavefunction, and which to the 
angular component. 

solution: 
Shown on figure 1 

2 Acoustic phonons in a 2D square lattice 

In this problem we would like to study the dynamics of a 2 dimensional square 
lattice. To do this we will use the quadratic approximation to express the 
potential energy of the crystal. Atomic positions at equilibrium are represented 
by the following vectors: 

R�uv = a(u�ex + v�ey) 

where a is the lattice spacing. Instantaneous atomic displacements with respect 
to their equilibrium position are represented by the following vectors: 

�τuv = xuv�ex + yuv�ey 

where u and v are integers. 
In a 2D square lattice, each atom (u, v) has 4 nearest neighbours: (u − 1, v), 

(u +1, v), (u, v − 1) and (u, v +1). In our model we will consider that each bond 
between two nearest neighbours has a certain energy. This energy is divided into 
two contributions. The first one is a compression/elongation contribution 
arising only when atoms are moving in the same direction which is the bond 
direction. We model this by a spring of constant k. The second contribution is a 
shearing contribution arising only when one of the atom moves perpendicular 
to the other. We model this by a spring of constant g. The total potential energy 
of the crystal is a sum over an infinite number of pairs of atoms, but the only 
ones where the atomic displacement of atom (u, v) appear are the following: 

V (..., xuv, yuv, ...) = ... + 
1 k(xu+1v − xuv)2 + 1 k(xuv − xu−1v)2 + 1 k(yuv+1 − yuv )2 + 1 k(yuv − yuv−1)2 +�	2 2 2 2 � 
1 g(xuv+1 − xuv)2 + 1 g(xuv − xuv−1)2 + 1 g(yu+1v − yuv)2 + 1 g(yuv − yu−1v)2 +2 2	 2 2 

... 
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Figure 1: 

The first four terms are the ”compression/elongation” terms and the last four 
ones are the ”shearing” terms. For example if one looks at 1 g(xuv − xuv−1)2 ,2 
one sees that when atoms (u, v − 1) and (u, v) are displaced by respectively 
xuv−1 and xuv in the x direction, then the relative displacement between the 
two atoms is xuv − xuv−1. And since this relative displacement is orthogonal 
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to the bond direction (which is in the y direction) then a shearing energy of 
1 g(xuv − xuv−1)2 is associated with it. 2 

1) Write down Newton’s equations for atom (u, v) given the expression for 
the total energy of the lattice given above. The atoms have the same mass 
denoted by m. 

solution: 
To obtain Newton’s equations, we can use the Lagrange formalism, which 

enables us not to worry about the sign of forces. The Lagrange equation for the 
x component of atom (u, v) is: 

d ( ∂L ) = ∂L 
dt ∂ẋuv ∂xuv 

The Lagrangian of the system can be written as: L({xuv , yuv}, {ẋuv, ẏuv}, t) = 
( 1 mẋ2 + 1 mẏ2 ) − V ({xuv, yuv }), and if we plug this expression in the uv 2 uv 2 uv 

Lagrange equation for xuv, we can deduce the equation of motion: 

d2 

m xuv = k(xu+1v + xu−1v − 2xuv) + g(xuv+1 + xuv−1 − 2xuv )dt2 

The same kind of steps leads us to the equation of motion for yuv: 

d2 

m yuv = k(yuv+1 + yuv−1 − 2yuv) + g(yu+1v + yu−1v − 2yuv )dt2 

2) By using the ansatz: 

�τuv = (x0�ex + y0�ey)ei(kxua+ky va−ωt) 

transform Newton’s equations into a 2 dimensional linear system of equations. 
solution: 
From the ansatz, we can deduce an expression for xuv(t) and yuv(t): 

xuv(t) = �τuv · �ex = x0e
i(kx ua+ky va−ωt) 

and 

yuv(t) = �τuv · �ey = y0ei(kxua+ky va−ωt) 

Plugging those equations inside the equations of motion of question 1), we find: 

−mω2x0 = k(x0e
ikxa + x0e

−ikxa − 2x0) + g(x0e
iky a + x0e

−iky a − 2x0) 

and 

−mω2y0 = k(y0eiky a + y0e−iky a − 2y0) + g(y0eikxa + y0e−ikxa − 2y0) 

3) Find the dispersion relations ω(kx, ky). Define the first Brillouin zone 
for this crystal, i.e the smallest k-space unit cell that uniquely defines all the 
possible phonon frequencies ω(kx, ky). 

solution: 
The equations in question 2) are already decoupled for x0 and y0, so simpli

fying those equations by x0 and y0, gives us two dispersion relations: 

ω2 = 4m
k sin2(kx a 

2 ) + 4m
g sin2(ky a 

2 ) 

and 

ω2 = 4m
k sin2(ky a 

2 ) + 4m
g sin2(kx a 

2 ) 
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Figure 2: To plot the dispersions, i chose a = 1, 4
m
k = 1 and 4

m
g = 1/2 

From the dispersion formula, we see that the periodicity in x and y is the 
same and is given by 2

a
π . We can then obtain all the possible distinct phonon 

frequencies by restricting ourselves inside a square of side 2a
π in reciprocal space. 

We will consider kx and ky to vary between − π and π . A sketch of the two a a 
phonon dispersions is shown on figure 2. 

discussion: 
We see that the first dispersion formula is linked to a motion of the atoms 

in the x direction only. The corresponding phonons are then called longitudinal 
phonons. The other dispersion formula has to do with motion in the y direction. 
The corresponding phonons are then called transverse phonons. But both types 
of phonons are acoustical, because ω goes to zero when �k goes to �0. There are 
no optical phonons because there is only one atom in the smallest possible unit 
cell. 

Nuclear Magnetic Resonance 

In NMR experiments one can actually image a body by looking at resonance 
peaks in the radio frequency domain corresponding to photon emission as a 
response to a previous magnetic exitation. In this problem we would like to 
focus on the physics of this resonance and find a quantum description for it. This 
will be an occasion for us to solve the time-dependant Schrodinger equation. 

The principle of an NMR experiment is to look at the phenomenon of nuclear 
spin flip. To induce such a flip one uses a big homogenous magnetic field in 
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the z direction and a small magnetic field rotating in the xy plane. Nuclei (and 
electrons) are like little magnets, they carry an intrinsic magnetic moment which 

has the property to be proportional to the spin, i.e �µ = γS�̂ . The total energy 
of a magnet in a magnetic field B� reduces to the magnetic interaction of the 
magnet with the field: 

µ. B = −γS. B�Etot = −� � �̂

One describes the quantum state of the magnet by a 2 dimensional vector 

|ψ(t)� = 
a
b(
(
t
t
)
) 

, where a(t) and b(t) are time dependant complex numbers. 

This description is nothing but the description of the spin quantum state of a 
spin one-half particle like the electron or the proton. Indeed since the mag
netic moment is proportional to the spin, what we are actually looking at is the 
dynamics of the spin induced by the magnetic field B� . 

1) In homework two we saw what the y projection of the spin operator was. 
Now we need the entire description of the spin operator. Here it is: ⎛ ⎞ 

Ŝx 

S
�̂ = ⎝	 Ŝy ⎠ = Ŝx�ex + Ŝy�ey + Ŝz�ez 

Ŝz 

The projections are operators themselves and the expression for those operators 
in the orthonormal basis of the eigenvectors of Ŝz , denoted by {|+� , |−�}, is: 

ˆ h̄ 0 1 
=Sx 2 1 0 

Ŝy =
0 −ih̄

2 i 0 

ˆ h̄ 1 0 
Sz = 2 0 −1 

From the expression for the spin operator and the total energy of the magnet 
in a B� field, write down the time-dependant Schrodinger equation for the spin 

state |ψ� = 
a
b(
(
t
t
)
) 

. The magnetic field consists of the superposition of a 

homogeneous magnetic field in the z direction B�0 = B0�ez and a rotating field 
B�1 = B1(cos(ω1t)�ex + sin(ω1t)�ey) in the xy plane. 

solution: 
The total energy for the magnet is given by : −�µ. B� . Going from a classical 

to a quantum description, we find that the Hamiltonian of our system is : 

−γ�̂ + ˆ + ˆS. B� = −γ(ŜxBx SyBy Sz Bz ). We can then deduce the time-dependant 
Schrodinger equation for this system : 

ih̄ d|ψdt 
(t)� = −γ(ŜxBx + ŜyBy + ŜzBz ) |ψ(t)� 

In this equation |ψ(t)� is a 2 dimensional spin state, Ŝx, Ŝy and Ŝz are the spin 
operators and Bx, By and Bz are the projections of the magnetic field along 
the x, y and z directions. Those projections are numbers not operators! 

Now if we plug in the values for the spin operators and the components of 
the magnetic field, we find: 
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� � � �� �da(t) 
iγ B0 B1e

−iω1 t a(t)dt = db(t) 2 B1e
iω1t −B0 b(t)

dt 

2) In order to simplify the resolution of this equation in a(t) and b(t), we 
will use the following ansatz for ψ(t)�: 

2 

|ψ(t)� = 
d

c

(
(
t

t

)
)
e

e
−

i

i 

γB0t 

γB0t 
2 

Using this ansatz re-write the Schrodinger equation in terms of c(t) and d(t). 
To do this, express the left-hand side of the Schrodinger equation ih̄d|ψdt 

(t)� in 
terms of c(t) and d(t). Then express the right-hand side by replacing a(t) and 

b(t) by respectively c(t)ei 
γB

2
0t 

and d(t)e−i 
γB

2
0t 

. Simplify as much as you can the 
terms remembering that cos(x) + i sin(x) = eix and cos(x) − i sin(x) = e−ix . 
The final equations in c(t) and d(t) should be simple. 

solution: 
If one follows all the steps outlined above, one finds the following system of 

equations for c(t) and d(t): 

dc(t) e−i(ω1 +γB0)td(t)dt iγB1= dd(t) 2 ei(ω1+γB0)tc(t)
dt 

3) The solution for those equations, given that at t = 0 we consider that 
1 |ψ(0)� = |+� = 0 

, are: 

� � � 
1 iω+t iω

� 
c(t) ω−−ω+ 

(ω−e − ω+e − t) 
d(t) = 2e−i(ω++ω−)t 

ω+ω (eiω+t iω−t)γB1(ω−−ω+) − − e

where ω± = − 2
1 (γB0 + ω1 ± (γB0 + ω1)2 + (γB1)2). Given this, write down 

the quantum state of the system at any time t. 
solution: 
The quantum state is given by the following ket: ⎛ ⎞ 

iγB0t/2 

ψ(t)� = ⎝ 
e
ω−−ω+ 

(ω−eiω+t − ω+e
iω− t) ⎠γB0 

2e i(ω1+ 2 )t
|

γB1(ω−−ω+) ω+ω (eiω+t − eiω−t)−

4) What we are interested in is the probability that at time t the system 
has ”flipped” to a spin down state from the spin up state at time t = 0. Given 
the full expression of |ψ(t)� of question 3), calculate this transition probability 
P (t) to measure the system in a ”spin down” state at time t. Give your |+�→|−�
answer in terms of γ, B0, B1, ω1 and t. 

solution: 
In this question, we apply one of the postulates of quantum mechanics: the 

probability to measure the system in a ”spin down” state at time t is given by 
the following projection: 

P|+�→|−�(t) = |�−|ψ(t)�| 2 

Given the full expression for |ψ(t)�, we see that the probability is the following: 
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(t) = −t) 
2γB0 

2e i(ω1+ 2 )t 
iω+t iω(eP ω+ω − e|+�→|−� −γB1(ω−−ω+) 

By plugging in the values for ω+ and ω , we see that this probability can be −
written as: 

P|+�→|−�
(γB1 )

2 

(t) = (ω1+γB0)2+(γB1)2 sin2( (ω1 + γB0)2 + (γB1)2 2 
t ) 

5) From question 4), calculate the maximum value for the transition prob
ability. Plot the maximum probability as a function of ω1 considering that ω1 

can take positive and negative values (this relates to the fact that B�1 can ro
tate clockwise or anti-clockwise in the xy plane). What is the width at half 
maximum Δω? 

solution: 
From the solution in question 4), we see that the maximum probability is 

this: 
(γB1)

2 

Pmax = (ω1+γB0)2 +(γB1 )2 

The width at half maximum is a measure of how ”sharp” the maximum prob
ability peaks around its maximum value. To obtain it one has to solve the 
following equation : Pmax(ω1) = 1

2 (Pmax)max = 2
1 for ω1, and then calculate 

the ”distance” between the two solutions of this equation. When one does that, 
one finds: Δω = 2γB1. A plot of the maximum probability is shown on figure 
3. 

Figure 3: Plot of the maximum probability of transition between state |+� and 
state |−� with respect to the excitation frequency ω1. One can see that when B1 

goes to zero, this probability is sharply peaked around a resonance frequency 
ω0 = −γB0. To obtain this plot i used −γB0 = 1 and −γB1 = 1/10. 
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6) What is the limit of Δω when the amplitude of the rotating magnetic 
field B1 is going to zero? What can you conclude from that? 

solution: 
From question 5), we see that the ”width” of the peak is proportional to 

Δω = 2γB1. So when B1 goes to zero (without being actually zero!), the 
maximum probability has a value close to one only for a very small window 
around the resonance frequency. So an NMR device is an extremely sensitive 
instrument. 

discussion: In an hospital, one can use an NMR system to image the brain 
of a patient for example. To do this, superconducting coils are used to create 
an inhomogeneous B�0 field. Then a rotating field B�1 is created with a definite 
frequency ω1. Now since the resonance frequency is given by γ||B�0|| and the 
sharpness of the resonance is given by 2γB1, one can see that if B1 is really small, 
then only areas of the brain where the local field B�0 is such that γ||B�0|| = ω1 will 
absorb and emit radio photons. If we somehow have a way to determine from 
what points in space the emitted photons originated, then we have a device that 
is capable of precisely imaging areas of the brain that have the same chemical 
and magnetic environment. 
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