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Homework # 3 

September 29, 2007


Homework is due on Wednesday October 3rd, 5pm 

1 The Scanning Tunneling microscope 

The purpose of this exercise is to show how from physical intuition we can 
create a physical model for a system, solve this model mathematically and then 
compare the prediction of the model with experiment. The physical system will 
be an electron moving from a piece of metal right through a vacuum region 
towards another piece of metal. What we want to calculate is the electrical 
current that tunnels through the vacuum layer. 

1.1 Modeling the system 

We have already seen the problem of an electron in an infinite well in one 
dimension. We solved for the eigenvalues and eigenfunctions. In reality an 
electron in a metal does not ”hit” an infinite wall of potential but a finite wall. 
So we will model an electron in a piece of metal as being trapped inside a box 
with a finite height of potential. Inside the metal the electron will not feel 
any potential and outside it, i.e in the vacuum region, the potential energy of 
the electron will be V0. At this stage we will introduce the concept of Fermi 
energy. In a metal the Fermi energy is the highest occupied energy. This means 
that each eigenstate with an energy between 0 and EF will be occupied by 2 
electrons (because each energy state can be occupied by one ”spin up” electron 
and one ”spin down” electron). A sketch of the potential energy landscape seen 
by an electron in this problem is shown on figure 1. 

1.2 Mathematical solution for our model 

Important: Do not worry about the Fermi energy. We will come back 
to this notion later in the problem and you can just ”forget” it right 
now. 

In this part we would like to solve for the wavefunction of an electron in the 
potential landscape shown on figure 1. In our model we will take the lowest 
occupied level as our reference energy. The vacuum energy is called V0 and 
corresponds to the potential energy of an electron in vacuum. We will consider 
the problem of an electron of energy E in the potential energy landscape shown 
on figure 1. Let us denote by (I), (II) and (III) the three different regions of 
space as shown on figure 1. 
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Figure 1: Sketch of a piece of metal (the STM tip on the left) hanging above 
another piece of metal (the surface to study on the right). Here the potential 
energy landscape felt by the electron in the different regions of space is shown. 

1) Write down the stationnary Schrodinger equation for the electron in the 
three different regions (I), (II) and (III). 

solution: 
In regions (I) and (III), the electron is free to move and so the potential is 

zero. Hence the stationnary Schrodinger equation can be written as: 

h̄2 d2 
− dx2 ψ(x) = Eψ(x) regions (I) and (III) 2m 

In region (II), the electron feels a potential of intensity V0. The Schrodinger 
equation is then: 

h̄2 d2 
− dx2 ψ(x) + V0ψ(x) = Eψ(x) region (II) 2m 

2) We will consider that 0 < E < V0, where E is the total energy of the elec
tron (appearing on the right-hand side of the Schrodinger equation). Given this, 
express the general solution of the Schrodinger equation in respectively regions 
(I), (II) and (III) in terms of imaginary and/or real exponential functions. 

solution: 
In regions (I) and (III), the Schrodinger equation can be re-written as: 

d2 

dx2 ψ(x) + k2ψ(x) = 0 regions (I) and (III) 

where k is the wavevector of the electron (k2 = 2mE ).
h̄2 

In region (II), the Schrodinger equation looks the same as above but with a 
minus sign in front of the linear term in ψ: 

d2 

dx2 ψ(x) − κ2ψ(x) = Eψ(x) region (II) 

where κ is given by κ2 = 2m(V
h̄
0
2
−E) . 

The first Schrodinger equation is well-known and we solved for it many times. 
The solution is a linear combinaison of complex exponentials like: 

ψ(x) = Aeikx + Be−ikx region (I) 
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ψ(x) = Eeikx + Fe−ikx region (III) 

The second Schrodinger equation is well-known in mathematics. The general 
solution for such an equation is a linear combinaison of real exponentials like: 

ψ(x) = Ceκx + De−κx region (II) 

3) What we want to describe in our problem, is an electron coming from 
the left-hand side (in region (I)) and going through the vacuum layer towards 
the right-hand side (in region (II)). Considering that eikx describes a travelling 
wave going to the right and e−ikx a travelling wave going to the left, we see 
that we will have to rule out some unphysical solutions in the general solution 
of question 2). Indeed, since the electron comes from the left, the initial wave 
eikx in region (I) will be reflected at the boundary between regions (I) and (II), 
and so there must be a wave like e−ikx in region (I) to indicate the presence of 
a reflected wave. On top of having a reflected wave at the boundary between 
regions (I) and (II), some part of the wavefunction of the electron may tunnel 
through the vacuum layer and let a transmitted wave emerge in region (III). 
So in region (III), there must be a wave like eikx to indicate the presence of a 
transmitted wave. But there cannot exist any wave like e−ikx in region (III) 
because it would describe an electron coming from the right! Having said that, 
can you simplify the general solution of the Schrodinger equation in region (III)? 

solution: 
The simplified solution, given that no wave traveling to the left can exist in 

region (III), is: 

• ψ(x) = Aeikx + Be−ikx region (I) 

• ψ(x) = Ceκx + De−κx region (II) 

• ψ(x) = Eeikx region (III) 

4) In this problem, the potential energy of the electron is a piecewise function, 
but the discontinuities between regions (I) and (II) and between regions (II) and 
(III) are finite. This means that the wavefunction and its first derivative will 
be continuous at the discontinuities, i.e x = 0 and x = a. Write down the four 
equations corresponding to the continuity conditions for the wavefunction and 
its first derivative at x = 0 and x = a. 

solution: 
At x = 0, we have the following continuity conditions: 

• A + B = C + D continuity of ψ 

ik(A − B) = κ(C − D) continuity of dψ • dx 

At x = a, we have another set of continuity conditions: 

• Ceκa + De−κa = Eeika continuity of ψ 

κ(Ceκa − De−κa) = ikEeika continuity of dψ • dx 

5) From question 4), we see that we end up with a system of 4 equations for 
5 unknown. But what we are interested in, is the amount of transmitted wave 
(in region (III)) with respect to the incoming wave (in region (I)). So what we 
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can do is to divide the four equations of the system by the constant in front 
of the incoming wave eikx in region (I). That way we will define the reflection 
coefficiant r as being the ratio between the coefficiant in front of the reflected 
wave e−ikx in region (I) and the coefficiant in front of the incoming wave eikx 

in region (I). Similarly, we will define the transmission coefficiant t, as being 
the ratio between the coefficiant in front of the transmitted wave eikx in region 
(III) and the coefficiant in front of the incoming wave eikx in region (I). Using 
those notation re-write the system of 4 equations for the 4 unknown ratios. 

solution: 
Introducing the notation r = B , t = E , α = C and β = D , we see that the A A A A 

four continuity conditions can be simplified to the following system of equations: 

1 + r = α + β• 

• ik(1 − r) = κ(α − β) 

αeκa + βe−κa = teika • 

• κ(αeκa − βe−κa) = ikteika 

6) From the system of 4 equations in question 5), we can solve for t and find 
the following result: 

|t|2(E) = 
V 2 

1 � 
2m1+ 4E(V0

0 
−E) sinh2(a 

h2 (V0−E)) 
¯

What we want to calculate now is the transmitted current density with respect 
to the incoming density. The classical expression for the current density of 
a single electron is: j = −ev, where −e is the charge of the electron and v is its 
velocity. Can you express j in terms of the momentum p? From that expression, 
express the quantum equivalent of the current density, i.e the quantum current 
density operator. Finally calculate the ratio ��

j
j
t

i�
� between the expectation value 

of the quantum current density operator in region (III) and the expectation 
value of the quantum current density operator in region (I) (for the incoming 
wave only!). 

Remark: if you feel unconfortable with the normalization of the transmitted 
wave eikx (because you don’t know what the boundaries of the integral are), it 
doesn’t matter, because in this case you are interested in the ratio of two current 
densities that will each contain an integral of a complex exponential, and those 
two integrals will cancel out. 

solution: 
In classical mechanics, the current dnsity for one electron is: j = −ev = 
e p. To find the corresponding quantum operator, all we have to do is substim− 

h̄ dtute p for i dx . The quantum current density operator is then: 

ˆ eh̄ d ieh̄ d=j = − mi dx m dx 

The ration between the expectation value of the quantum current density 
operator in region (III) and the expectation value of the quantum current density 
operator in region (I) is given by: 

t∗e−ikx ie¯ ikx 
�jt� � 

h d (te )dx 
= m dx 2 

e−ikx ie¯ d = |t|�ji� 
m

h 
dx (e

ikx)dx 
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1.3 Physical discussion 

7) In question 6), we have been expressing the expectation value of the current 
density operator when the electron is described by a wavefunction ψ correspond
ing to eigenenergy E. As I explained in the first section of this problem, in a 
metal, all the eigenenergies E up to the Fermi energy EF are occupied by two 
electrons. If the two metals (on both side of the vacuum region) have the same 
value for EF , what do you think will be the ”net” current tunneling through 
the vacuum region? Explain your answer. 

solution: 
From question 6), we conclude that the probability that an electron tunnel 

through the vacuum layer is given by |t|2(E) (for a given energy E between 
0 and V0). Up to now, we have been discussing an electron coming from the 
left hand side and tunneling towards the right hand side. But because of the 
symmetry of the problem, we see that an electron coming from the right hand 
side can also tunnel towards the left hand side, with the exact same probability. 
Since the Fermi energy indicates the highest energy state occupied in the metal, 
we see that if the two metals have the same Fermi energy, then the ”net current” 
going through the vacuum layer is zero. Indeed, an electron coming from the 
left hand side with an energy E is ”canceled out” by an electron coming from 
the right hand side with the same energy E. 

8) From question 7), we see that in order to break the symmetry of the 
problem and create a net current from the tip towards the surface, we need 
to introduce a bias. This is achieved by connecting the two pieces of metal to 
a generator that will introduce a little potential difference V between the two 
metals. If one wants a net flow of electrons from the left to the right, can you 
show on a diagram what the shift in the Fermi energies of the two metals should 
be? 

Remark: In a given potential configuration, an electron always goes where 
the potential is smaller in order to minimize its total energy. 

solution: 
From what has been explained in question 7), we see that in order to get 

a ”net current” flowing from the left to the right, we need to raise the Fermi 
energy in the tip (the metal on the left hand side), and lower the Fermi energy 
at the surface (the metal on the right hand side). To achieved this, we connect 
the two metals to a generator and apply a bias V . Everything is indicated on 
figure 2. 

9) Now let us imagine that the bias between the two metals is really small. If 
this is the case then most of the net current result from the motion of electrons 
from the left to the right with an energy corresponding to the Fermi energy 
E = EF . Let us introduce φ = V0 − EF . φ is called the ”work function” of the 
metal. Can you simplify the expression obtained in question 6) (at E = EF ) 
when the argument of the sinh is big (Remember that sinh(x) ≈ e x 

when2 
x >> 0)? Give a result in terms of φ, EF , V0, a and fondamental constants like 
¯ In this simplified expression, what is the caracteristic decay length h, and m. 
of the current density? For a (100) surface of Aluminum, the work function is 
φ ≈ 4.20eV. Can you give an estimate for the caracteristic decay length? From 
this value, conclude about the capability of an STM device to image a surface 
up to atomic dimensions. 

solution: 

5 



� 

0 a

V(x)

V0

xmetalvacuummetal

EF + V/2 EF − V/2

(I) (II) (III)

¯

Figure 2: In order to have a net flow of electron from the left to the right, we 
apply a bias between the two metals. The Fermi energy is raised on the left 
hand side by V/2 and lowered on the right hand side by V/2, where V is the 
applied bias. 

e 
Replacing E by EF in the expression for |t|2 and expanding the sinh(x) in 

x 
, we find that: 2 

2mφ 
h22 16φ e

−2a |t|
V

≈ 2
0 

From this expression, we see that the caracteristic decay length is l = �1 .
2mφ 

For the (100) surface of Aluminum, we end up with: l ≈ 0.47Å. From 
2 2h̄ 

this value we can safely conclude that an STM device is more than capable of 
imaging a surface up to atomic dimensions. 

10) From question 9) we come to the conclusion that, when a small bias exists 
between the two metals, the current density is exponentially depending on the 
distance a between the two metals and so the device (the STM) is extremely 
sensitive to the distance between the tip and the metal surface. From there, can 
you think of a measurement setup that would allow us to image the surface? 

solution: 
A practical measurement setup would be to use an electronic system (a 

feedback loop) that would monitor in live the current and act on the tip (i.e 
raising or lowering the tip) in order to keep the current constant. That way 
someone would image the surface by following the z coordinate of the tip with 
respect to displacement in x and y directions. 
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