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Homework # 2 

September 28, 2007 

Homework is due on Wednesday September 26th, 5pm 

1	 The power of spinach 

MIT researchers have been able to use the Photosystem 1 in spinach chloroplasts 
to convert sunlight to energy into a solid-state electronic spinach sandwich de
vice that may one day power laptops and cell phones. What would be the size 
of the confining region for the electron responsible for the green color of spinach 
? (Hint: To study this problem, assume that the electronic transition is from 
the ground state to the first excited state. You can think at Photosystem 1 as 
being a 1-d infinite well) 

solution: 
For a one dimensional infinite well, the energy levels are given by: 

h̄2π2 2 h2 2En = 2ma2 n = 8ma2 n

The ground state is given by n = 1 and the first exited state is given by n = 2 
(Remember the discussion about the negative values of n that are not eigenstates 
because they lead to the same solution as the ones with positive n. Moreover 
n = 0 would lead to a null wavefunction which is not physical.). From there we 

hcfind that the energy of the corresponding photon E = hν = λ (for green light 
λ ≈ 510nm) is such that: 

hc 3h2 

λ = E2 − E1 = 8ma2 

From this equation, we extract the value for a, 

3hλ a = 8mc 

Numerically we find, a ≈ 6.8Å. 

2	 Molecular orbitals and the Linear Combinaition 
of Atomic Orbitals method (LCAO) 

Background on LCAO In this problem, we will be interested in character
izing the two lowest lying molecular orbitals of an electron in the Hydrogen 
molecule H2. To find those molecular orbitals, we will use a well-known tech
nique in Quantum Chemistry called the Linear Combinaition of Atomic Orbitals 
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(LCAO). The spirit of the technique is the following: Imagine that you take two 
hydrogen atoms far from each other. In that case each atom has one elec
tron, and the wavefunction of each electron is described by a 1s atomic orbital, 

= 1 e− a
r 
0 , where a0 is the Bohr radius. When one then reduces the φ1s √

πa3
0 

distance between the two hydrogen atoms up to atomic dimensions, the ground 
state wavefunction of each electron is no longer described by a 1s orbital because 
an electron localized around one of the proton can hop to the second proton of 
the H2 molecule. So what is the wavefunction then? The LCAO technique ap
plied to the case of the H2 molecule consists in writing the total wavefunction of 
an electron as a linear combinaison of two 1s orbitals, one centered around each 
proton. The new wavefunction is then called a molecular orbital because it 
spreads over the entire molecule and is not localized around a particular atom. 
Hence the molecular orbital looks like this: 

ψ = c1φ1s(1) + c2φ1s(2) 

where (1) and (2) stand for proton 1 and 2. We can compactly represent this 
linear combinaison as a 2-dimensional vector in the basis of φ1s(1) and φ1s(2) 
as: 

c1ψ = 
c2 

Expressing the Hamiltonian of an electron Let’s call Ĥ the hamiltonian 
of a single electron in an H2 molecule. Since we expressed the electronic wave-
function as a linear combinaition of φ1s(1) and φ1s(2) only, we need to find 
the hamiltonian matrix in the basis formed by those two atomic orbitals if we 
want to be able to find the eigenenergies (i.e the molecular energies) and the 
corresponding eigenfunctions (i.e the molecular orbitals). So we see that instead 
of expressing the hamiltonian in an infinite and complete basis, we chose a 
two-dimensional basis. This is clearly an approximation but if the two basis 
functions are carrefully chosen, then the eigenfunctions obtained by diagonaliz
ing the hamiltonian matrix in this 2-dimensional basis can be very accurate in 
describing the ”exact” molecular orbitals. Let’s define the matrix elements of 
the hamiltonian as: 

E0 = φ1s(1)|Ĥ|φ1s(1) = φ∗ 
1s(1) ˆ (1)Hφ1s

which by symmetry is equal to: 

E0 = φ1s(2)|Ĥ|φ1s(2) = φ∗ 
1s(2) ˆ (2)Hφ1s

and 

V = 
� 
φ∗ 

1s Hφ1s(2) = 
� 
φ∗ 

1s(2) ˆ (1)(1) ˆ Hφ1s

The off-diagonal elements shown above are in general complex conjuguate to 
each other, because the hamiltonian matrix must be hermitian, i.e Ĥ† = Ĥ. 
Using E0 and V we find that the hamiltonian matrix expressed in the two-
dimensional basis of the φ1s(1) and φ1s(2) atomic orbitals is: � � 

Ĥ = 
E0 

V 
V 
E0 
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The atomic orbitals φ1s(1) and φ1s(2) are real and normalized wavefunctions 
-i.e |φ1s(1)|2 = �φ1s(1)2 = 1 and the same for φ1s(2)- but they are not 
orthogonal because φ1s(1)φ1s(2) = S =� 0. In order to find the eigenergies 
we will have to equate the determinant of the following matrix to zero (This is 
a generalization of the determinantal eigenvalue equation for non-orthogonal 
basis): 

E0 − λ V − λS

V − λS E0 − λ


1. Find the eigenenergies (λ+ and λ ) of an electron in an H2 molecule by −
solving the determinantal equation above for λ. λ+ will be the smallest 
eigenenergy (knowing that S is positive and V is negative) and λ the −
largest. 

solution: 

If we equate the determinant of the above matrix to zero, we find: 

(E0 − λ)2 − (V − λS)2 = 0 

Now we know that if x2 = y2, then x = y or x = −y. From this we deduce 
that: 

E0 − λ− = V − λ−S or E0 − λ+ = −(V − λ+S) 

and so we find: 

E0+Vλ− = E
1
0
−
−
S
V and λ+ = 1+S 

2. For each of the two possible eigenenergies	 λ+ and λ−, find the corre
sponding normalized eigenvectors by solving the Schrodinger equation in 
matrix form (This is a generalization of the matrix eigenvalue equation 
for non-orthogonal basis): �	 �� � 

E0 − λ± V − λ±S c1 = 0 
V − λ±S E0 − λ± c2 

solution: 

For each of the eigenenergies, we will inject their expression in the above 
matrix equation: 

for λ+, we have �	 �� � 
+ cE0 − λ+ V − λ+S 1 
+ = 0 
cV − λ+S E0 − λ+ 2 

which gives us �	 �� �E0+V E0+V +E0 − 1+S V − 1+S S c1 = 0 E0+V E0+V +V − 1+S S E0 − 1+S c2 

which when multiplied everywhere by (1 + S) simplifies to 
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SE0 − V V − SE0 c + 

= 0 1 
V − SE0 SE0 − V c + 

2 

+ +we then end up with c1 = c2 . We need now to normalize this eigenvector. 
To do this let us write explicitly the eigenvector in terms of the basis kets 
|φ1s(1)� and |φ1s(2)�: 

+ 
+ c1 + + c � = + = c1 φ1s(1)� + c2 φ1s(2)�|

c2 
| |

To express the corresponding bra �c+|, we will take the complex conjuguate 
of the above ket: 

+ + + + +�c | = c1 |φ1s(1)� + c2 |φ1s(2)� † 
= (c1 )

∗ �φ1s(1)| + (c2 )
∗ �φ1s(2)| 

If we want the eigenvector to be normalized, we need to impose the fol
lowing condition: �c+|c+� = 1, which translates into: � � � � 

+ + + +(c1 )
∗ �φ1s(1)| + (c2 )

∗ �φ1s(2)| c1 |φ1s(1)� + c2 |φ1s(2)� = 1 

Expanding this expression and remembering that �φ1s(1) φ1s(2)� = �φ1s(2) φ1s(1)� = 
S, �φ1s|φ1s(1)� = 1 and �φ1s(2)|φ1s(2)� = 1, we find: 

| |

+ + + + + +|c1 |2 + (c1 )
∗c2 S + (c2 )

∗c1 S + |c2 |2 = 1 

+ + +To finish, we will use the fact that for |c �, we have c = c2 . Knowing 1 
this, we see that the above expression reduces to: 

+|c1 |2(2 + 2S) = 1 

which gives us: 

+ 1 c1 = √
2+2S 

The final answer for the normalized eigenvector |c+� is: 

1+ 1c| � = √
2+2S 1 

for λ , we have − � �� � 
c−E0 − λ− V − λ−S 1 = 0 
c−V − λ−S E0 − λ− 2 

which gives us � �� � 
E0 − E1

0
−
−
S
V V − E1

0
−
−
S
V S c−1 = 0 E0−V S E0−V c−V − 1−S E0 − 1−S 2 

which when multiplied everywhere by (1 − S) simplifies to 
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−SE0 + V V − SE0 c1

−
= 0 

V − SE0 −SE0 + V c2
−

we then end up with c−1 = −c−2 . Following the same procedure as above, 
we can easily find the expression for the normalized eigenvector |c−�: 

11|c−� = √
2−2S −1 

3. From the calculations carried out in the previous questions, we see that 
an electron has two possible states in the H2 molecule. Because of the 
spin degeneracy, the ground state of the H2 molecule consists of the two 
electrons accupying the lowest energy state with opposite spins. Then 
what is the total energy of the H2 molecule? (in its ground state) 

solution: 

The total energy of the H2 molecule in its ground state is given by: 

= 2 E0+VEtot = 2λ+ 1+S 

4. If ĥ is the hamiltonian of an electron in the hydrogen atom, then φ1s is 
an eigenfunction (the ground state) of ĥ for the eigenvalue �0 (the ground 
state energy). Then what is the total energy of two isolated hydrogen 
atoms? (in their ground state) 

solution: 

You cannot find an easier question than this one in this problem set. The 
total energy of two isolated hydrogen atom is obviously: 

Eisolated = 2�0tot 

5. If one considers that	 �0 is equal to E0 (this is almost true for the H2 

molecule), can you demonstrate that the formation of a H2 molecule is 
favored energetically with respect to two isolated atoms? 

solution: 
Let us look at the energy difference between the H2 molecule and two isolated 

hydrogen atoms: 

ΔE = Etot − Eisolated = 2 E0+V − 2�0tot 1+S 

Now if we consider that �0 is close to E0, we see that: 

ΔE = 2 V −SE0 < 01+S 

So the formation of an hydrogen molecule is energetically favored with respect 
to two isolated hydrogen atom. 
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3 The spin of the electron 

During the 1920’s, physicists realized that in order for them to be able to explain 
all the experimental results accumulated over the previous 20 years, they needed 
to give to the electron an intrinsic property, the spin. In Quantum mechanics, 
the spin of the electron is described by a 2 dimensional complex vector like: 

a |ψ� = 
b 

where a and b are complex numbers. In this exercise, we will consider that the 
electron spin is described by the following quantum state: 

1√
2|ψ� = − √1
2 

Since the spin is a measurable quantity there are hermitian operators associated 

with it. We have seen in class the angular momentum operator L̂, which is a 
vectorial operator, i.e it has 3 coordinates ( L̂x, L̂y and L̂z ) that are actually 
operators of their own. Now suppose you want to know what is the y projection 
of the spin of an electron described by the spin vector above (|ψ�). For this you 
need the expression of the y projection of the spin operator Ŝy: 

Ŝy =
0 i 
−i 0 

Using the principles of Quantum mechanics, answer the following questions: 

1. What are the possible measurement results for the y projection of the 
spin? 

solution: 

According to the postulates of quantum mechanics, the only possible result 
of the measurement of the physical quantity s is one of the eigenvalues of 
the corresponding operator Ŝy. Thus we need to determine the eigenvalues 
of Ŝy by solving : det( Ŝy − λÎ)= 0. The second order algebraic equation 
that we obtain is: λ2 −1 = 0. Solutions are ±1. Consequently, the possible 
measurement results are s1 = −1 and s2 = 1. 

2. Is |ψ� normalized? 

solution: 

To check whether |ψ� is normalized, we must verify that its norm �ψ|ψ�
equals 1: 

� �� � 1

�ψ|ψ� = � ( √1
2 
)∗, (− √1

2 
)∗ · − 

√

√
2
1
2 

We then find that �ψ|ψ� = 1 such that |ψ� is indeed normalized. 
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3. Is |ψ� an eigenvector of the spin operator Ŝy? 

solution: 

To check whether |ψ� is an eigenvector of Ŝy, we need to determine whether 
Ŝy |ψ� = s |ψ� where s is one of the eigenvalues calculated before. The 
matrix product gives us: � �� 

1
� � � 

−i0 i √
2 

√
2= 0 1 −i−i − √

2 
√

2 

But this last vector cannot be written as s ψ� (check it), so ψ� is not an 
eigenvector of Ŝy. 

| |

4. What are the eigenvectors of Ŝy ? 

solution: 

To calculate the first eigenvector of Ŝy, we need to solve the equation 
Ŝy |u1� = s1 |u1�. The matrix product gives us: � �� � � � 

0 i x1 x1 

−i 0 x2 
= − 

x2 

which reduces to a single equation : x1 + iy1 = 0. Consequently we have 
y1 = − 1 

i x1 = ix1. Now we want to normalize our vector, so we impose: 

� x1 �u1|u1� = 1 = ((x1)∗, (ix1)∗) · ix1 

1

we then end up with x1 = 1 and so = 
√
i
2 . In the same | | √

2 
|u1� √

2 

way we find that the eigenvector associated with the eigenvalue s2 = 1 is 
1
√
2
|u2� = − √i
2 

5. Can you express |ψ� in terms of the eigenvectors of Ŝy? 

solution: 

The eigenvectors |u1� and |u2� form an orthonormal basis set of the spin 
vector space. As a result, ψ� can be written as a linear combinaison of 
|u1� and |u2�: 

|

|ψ� = α |u1� + β |u2� 

The coefficiants are nothing but the projections of |ψ� onto the corre
sponding basis vector. For example: 

� � 1

α = �u1|ψ� = ( √1
2 
)∗, (√i

2 
)∗ · − 

√

√
2
1
2 
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so we easily find that α = 1+i . In the same way we find that β = 1−i and2 2 
we conclude that: 

1+i u1� + 1−i|ψ� = 2 | 2 |u2� 

6. What would be the probability of obtaining each one of the possible mea
surement results for the y projection of the spin? 

solution: 

According to the postulates of quantum mechanics, when the physical 
quantity s (here the y projection of the spin) is measured on a system 
in the normalized state |ψ�, the probability P (s = s1) of obtaining the 
measurement result s = s1 is: 

P (s = s1) = 2 = ( 1+i )∗( 1+i ) = 1| �u1|ψ� | 2 2 2 

Similarly, the probability P (s = s2) of obtaining the measurement result 
s = s2 is: 

P (s = s2) = | | |2 = ( 1−i )∗( 1−i ) = 1�u2 ψ� 2 2 2 

7. What is the quantum state of the particle after each possible measure
ment? 

solution: 

Still following the postulates of quantum mechanics, if the result of the 
measurement is s = s1 the state of the system immediately after the mea
surement is |u1� (that is the eigenvector corresponding to the eigenvalue 
s1). Similarly, if the result is s2, the particle goes in the state |u2�. 
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