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Homework # 5 

October 15, 2007


Homework is due on Wednesday October 17th, 5pm 

Density of states 

We saw both in recitation and in class, that we can calculate the 3D density of 
state corresponding to a given dispersion formula E(�k), by using the following 
formula: 

V dS g(E) = (2π)3 E(�k)=E �� E(�k)� 
for the 3D case 

��k 

where the integral is carried out over the ”isosurface” of energy E, i.e the sur
face defined by the equation E(kx, ky, kz ) = E. The infinitesimal surface ele
ment is dS and V is the volume of the 3D crystal. The 2D equivalent is the 
following: � 

g(E) = A dl for the 2D case (2π)2 E(�k)=E �� E(�k)���k 

where the integral is carried out over the ”isosurface” of energy E, i.e the curve 
defined by the equation E(kx, ky ) = E. The infinitesimal element of length along 
the isosurface is dl and A is the area of the 2D crystal. Finally for the 1D case 
we have: 

g(E) = (2
L
π) k0 | (

1 
k=k0)| 

for the 1D case dE(k) 
dk 

where k0 are all the k points such that E(k0) = E, and L is the length of the 
1D crystal. 

1.1 Free electron gas in 1D, 2D and 3D 

Now we will apply this to the 1D, 2D and 3D free electron gas. 
1) Write down the dispersion relations E(�k) for a free electron gas in 1D, 2D 

and 3D. From those relations, describe the corresponding isosurfaces, i.e draw 
a typical isosurface for each case (1D, 2D, 3D). 

2) For the 2D and 3D cases, find the appropriate set of coordinates to de
scribe an isosurface. Using this set of coordinates, give a mathematical expres
sion for the ”surface” element dS. Finally give an analytical form for the density 
of states. 

3) For the one dimensional case, use the third formula above to calculate the 
density of states. 

4) Plot the 1D, 2D and 3D density of states as a function of the energy E. 
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1.2 The case of tightly bound electrons in 1D 

Let’s consider tightly bound electrons described by the following band dispersion 
(for a 1D linear chain of atoms): 

E(k) = �0 − 2γ cos(ka) 

1) Define the interval of all possible values for E(k) when k is in the first 
Brillouin Zone. Plot the band dispersion for k in the first Brillouin Zone. 

2) Using the formula for the 1D case, calculate the density of states. Plot 
this density of states as a function of the energy in the appropriate interval 
(defined in question 1)). 

2 Tight-binding method 

2.1 geometrical description of the crystal 

Let us consider a simple cubic lattice (3D) of lattice parameter a, with one atom 
per unit cell centered at the origin of the coordinate system. Each atom has 
one valence electron and in the atomic limit (i.e in the limit where the atoms 
are far from each other) this electron is described by an s-type atomic orbital 
φs(�r). 

1) Give a mathematical expression for the primitive basis vectors �a1,�a2,�a3 

that describe this simple cubic lattice. Calculate the expression for the recipro
cal primitive vectors �b1,�b2,�b3. What is the volume of the unit cell in real space? 
What is the volume of the unit cell in reciprocal space, i.e the first Brillouin 
Zone? Relate those two volumes by an equation. 

2) Express the equilibrium position vectors R� for the atoms in this simple 
cubic crystal in terms of the �a1,�a2,�a3 basis. Sketch the first Brillouin Zone in 
reciprocal space. 

2.2 calculation of the band dispersion 

The tight-binding method is an extension of the LCAO method, used in Chem
istry, to periodic systems like solids. The spirit of the technique is the following: 
If one looks at the wavefunction for an electron in the atomic limit (when the 
atoms of the solid are far from each other), then this wavefunction looks very 
much like the atomic orbital φs(�r). Now if we bring the atoms closer and closer 
to each other, the wavefunction for the electron will be perturbed and at suffi
ciently small distances between atoms, the electron will be able to ”hop” from 
atom to atom, and it will delocalize over the entire solid. Nevertheless when 
the electron is localized around one particular atom, let say the atom centered 
around position R� , the wavefunction must still look very much like φs(�r − R� ). 
So the idea of the tight-binding method is to write down the electronic wave-
function as a linear combinaison of all the atomic orbitals φs(�r − R� ), centered 
around each atom R� in the crystal (the summation over R� below concerns all 
atoms in the crystal): 

ψs(�r) = � c�φs(�r − R� )R R
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But in order to be an ”acceptable” wavefunction, ψs(�r) must satisfy Bloch’s 
theorem. This is a big constraint for ψs(�r), and as a consequence, we can write 
down an expression for ψs(�r) for each wavevector �k: 

ψ s�k(�r) = √1
N 

� 
R� e

i�kR�φs(�r − R� ) 

The √1
N 

is just a normalization factor (N being the number of unit cells in our 

crystal), and the coefficiants cR� are given by ei�kR� . 
We are interested in the eigenenergy Es(�k) of the periodic one-electron effec

tive hamiltonian Ĥ. To calculate this eigenenergy we use the following result: 

|Ĥ|ψ
(�k) = 

�ψ 

�ψ 

�ks �ksEs |ψ�ks �ks

1) Give the mathematical expression for ψ s�k|ψ s�k in terms of integrals over 
the volume of the crystal. In this expression you should obtain terms of the 
form: 

crystal φ
∗ 
s (�r − R� )φs(�r − R� �)d�r 

Because of the Born-Von Karman boundary conditions, one can show that this 
integral is equal to the following one: 

crystal φ
∗ 
s (�r)φs(�r − (R� � − R� ))d�r 

So you see that this integral only depends on the relative distance R� � − R� . 
Using this, simplify the expression for ψ � ψ � ? If the set of atomic orbitals � � sk| sk 

φs(�r − R� ) form an orthonormal basis, what is the mathematical expression � �R�
for ψ s�k|ψ s�k ? 

We will now consider that the set of atomic orbitals form an or
thonormal basis � � 

2) Now that we have expressed ψ s�k ψ s�k , we need to focus on the numer

ator ψ s�k|Ĥ|ψ s�k . Because Ĥ is a periodic hamiltonian we can show that the 

numerator can be written as: 

ψ s�k| ˆ |ψ s�k = R e
i�kR�

crystal φs r) ˆ (�r − � rH � (� Hφs R)d�

Let us denote by �s and γ the following integrals: �s = crystal φs(� Hφs r)d�rr) ˆ (�

and γ = crystal φs(� Hφs r− � r (when �r) ˆ (� R)d� R is a nearest-neighbour to the atom 

centered around the origin �0). Using those parameters, give a mathematical 
expression for ψ s�k|Ĥ|ψ s�k when one considers the sum over R� only up to 

nearest neighbours. 
3) Using the results of question 1) and 2), plot the function Es(�k) along the 

following lines in the first Brillouin Zone: from Γ ( 2a
π (0, 0, 0)) to X ( 2a

π (1, 0, 0)), 
then from X to L ( 2a

π (1/2, 1/2, 1/2)), and finally form L to Γ. 
4) Using a Taylor expansion for Es(�k) around �k ≈ �0, show that the band 

dispersion can be written as: 

Es(�k) ≈ α − h̄
2�k2 

2m∗ 
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and relate α and m∗ to the parameters �s, γ and a. From that expression what 
can you infer about the behavior of electrons with a wavevector close to the Γ 
point? How does the effective mass m∗ vary with the ”hopping integral” γ? 

5) If one considers that this crystal has only one valence electron per unit 
cell, will it be a metal or an insulator (explain your answer)? If this is a metal, 
what is the value of the Fermi energy? Show a 3D plot of the Fermi surface in 
the first Brillouin Zone (kx, ky and kz all vary between − π and π ).a a 

Si and GaAs 

Silicon and Gallium Arsenide crystals can be described by an fcc lattice with two 
atoms per unit cell. The primitive vectors �a1,�a2,�a3 for the fcc lattice expressed 
in a cartesian basis are given by: 

�a1 = a 
2 (0, 1, 1), �a2 = a 

2 (1, 0, 1), and �a3 = a 
2 (1, 1, 0) 

a is the lattice parameter. The basis vectors, that describe the positions of 
atoms inside a unit cell, are given by: 

a a�τ1 = 4 (1, 1, 1) and �τ2 = − 4 (1, 1, 1) 

1) Find an expression for the reciprocal space primitive vectors �b1,�b2,�b3. 
Give the expression for the Fourier coefficiant V � in terms of the periodic po-G 
tential V (�r). Establish a relationship between V − � and V 

G 
∗.G �

2) Does Silicon have an inversion symmetry, i.e V (−�r) = V (�r)? Explain 
your answer. What about GaAs? 

3) If a crystal have an inversion symmetry, show that V� = V G = V �
∗.G − � G 
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