3.185 Problem Set 1

Math Review

Due Monday September 9, 2002

1. Calculate the dot product (scalar) and outer product (matrix) for the vectors $(10,5,6)$ and $(3,4,5)$. (10)
2. For the time-dependent temperature field:

$$
T=400-50 z \exp \left(-t-x^{2}-y^{2}\right)
$$

(a) Calculate its gradient. (10)
(b) For the vector field $\vec{u}=2 \hat{\jmath}$, calculate its substantial derivative. (10)
3. "Stagnation" flow in 2-D against a free surface for an incompressible fluid is characterized by the vector flow field

$$
u_{x}=a x, u_{y}=-a y
$$

where $\vec{u}=\left(u_{x}, u_{y}\right)$ is the fluid velocity at a point (x, y) and a is a constant.
(a) Sketch this vector field for positive y, drawing a few arrows over the range $x \in[-1,1], y \in[0,1]$.
(b) Show that this vector field has zero divergence, so mass is conserved. (7)
(c) What is the curl of this vector field? (That is, the z-component of the curl.) (8)
4. For the differential equation:

$$
\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0
$$

(a) Solve for the general solution. There should be three real solutions to the differential equation, though the characteristic polynomial solutions may not be real. (15)
(b) At $x=0, y=1$ and $\frac{d y}{d x}=1$; at $x=\pi, y=-1$. What is the linear combination of the solutions to part 4a which satisfies these boundary conditions? (10)
5. For the error function defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\xi^{2}} d \xi
$$

calculate:

$$
\frac{\partial}{\partial t} \operatorname{erf}\left(\frac{y}{2 \sqrt{\alpha t}}\right)
$$

and simplify as much as possible. (15)
6. Show that

$$
C=\frac{a}{\sqrt{t}} e^{-\frac{x^{2}}{4 D t}}
$$

is a solution to the partial differential equation

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} \tag{10}
\end{equation*}
$$

