3.15

Carrier Drift, Diffusion and R&G C.A. Ross, Department of Materials Science and Engineering

Reference: Pierret, chapter 3.

Electron and holes can drift, diffuse, and undergo generation and recombination (R&G).

Drift:
thermal velocity $1/2 \text{ mv}^2_{\text{thermal}} = 3/2 \text{ kT}$
 $v_d = \mu \mathbf{E}$ ($\mu = \text{mobility}, \mathbf{E} = \text{field}$)

Current density (electrons)	$J = n e v_d$
Current density (electrons & holes)	$\mathbf{J} = \mathbf{e} (\mathbf{n} \ \boldsymbol{\mu}_{\mathrm{n}} + \mathbf{p} \ \boldsymbol{\mu}_{\mathrm{h}}) \mathbf{E}$
Conductivity	$\sigma = J/\mathbf{E} = e (n \ \mu_n + p \ \mu_h)$

Magnitude of mobility (cm²/Vs)

	μ_{n}	$\mu_{\rm h}$	
Si	1500	450	
Ge	3900	1900	
Ag	50	-	
GaAs	8500	400	

Time between collisions is τ	$\mu = e\tau/m^*$
Distance between collisions is <i>l</i>	$l = \tau v_{thermal}$

Diffusion

 $J = eD_n \nabla n + eD_p \nabla p$ Derivation of the Einstein relation: $D_n/\mu_n = kT/e$ typical D_n in Si is 40 cm²/s

Carrier R&G Mechanisms:

band-to-band (direct) RG centers or traps (indirect)

Thermal R and G at equilibrium: R = Gexpect $R = G = rnp = r n_i^2$ r = rate constant Shining light, etc. on the semiconductor causes additional R. These excess carriers n_1 and p_1 ($n_1 = p_1$)decay once the light is turned off.

the rate of recombination of the minority carriers is

 $\label{eq:constraint} \begin{array}{ll} -dp/dt = r(N_Dp - n_i^{\ 2}) & \text{but } n_i^{\ 2} = N_D(p - p_l \) \\ -dp/dt = rN_D(p - p + p_l) = rN_Dp_l \end{array}$

This has a solution $p_l = p_{l,t=0} \exp(-t/\tau_p)$, where $\tau_p = 1/rN_D$ = minority carrier lifetime.

Example of Carrier Action – Formal solution A piece of p-type Si is illuminated at one end; how does the carrier concentration vary with depth x? dn/dt = dn/dt = dn/dt = dn/dt

 $dn/dt = dn/dt_{drift} + dn/dt_{diffn} + dn/dt_{thermal RG} + dn/dt_{other RG}$ = 0 at steady state

 $n = n_p + n_l$ where $n_p = n_i^2/N_A$ Inside the material there is only thermal R&G:

$$\begin{split} G_{thermal} &= rn_i^2 = r n_p N_A \\ R_{thermal} &= rnp \sim r n_l N_A \\ R - G &= r N_A (n_l - n_p) \sim r N_A n_l = n_l / \tau_n \end{split}$$

In the steady state,

 $\begin{array}{l} dn/dt = dn/dt_{\rm diffn} - (R - G) = 0\\ dn/dt = 1/e \ \nabla J_{\rm diffn} - (R - G) = 0\\ d^2n_1 \ /dx^2 = n_1 \ /\tau_n D_n \end{array}$ (since $dn/dt_{\rm diffn} = 1/e \ \nabla J_{\rm diffn} = D_n d^2n/dx^2$ from Fick's law) solution: $n_1 = n_{1,x=0} \exp\left(-x/\sqrt{\tau_n}D_n\right)$

Generally, if excess carrier concentrations are written as n_l or p_l , then $dn/dt_{thermal} = -n_l/\tau_n$ or $dp/dt_{thermal} = -p_l/\tau_p$ Minority carrier lifetimes are $\tau_n = 1/rN_A$, or $\tau_p = 1/rN_D$, Minority carrier diffusion lengths are $\lambda_n = \sqrt{\tau_n D_n}$, or $\lambda_p = \sqrt{\tau_p D_p}$. If traps dominate the recombination, then $\tau = 1/r_2N_T$ where $r_2 >> r$