3.15 Electrical, Optical, and Magnetic Materials and Devices Caroline A. Ross Fall Term, 2005

Exam 2 (5 pages)

Closed book exam. Formulae and data are on the last 3.5 pages of the exam. This takes **80 min** and there are 80 points total. Be brief in your answers and use sketches.

Assume everything is at 300K unless otherwise noted.

1. MOSFET [20 points]

A MOSFET has the following structure:

- a) What happens when you apply a voltage V_G to G (when S and D are grounded)? Consider both positive and negative voltages. Illustrate with a sketch of the MOS band diagram. (10)
- b) What happens when you apply a negative voltage V_D to D, for different values of V_G (zero, positive and negative)? (assume S is grounded.) Draw plots of current I_{SD} vs V_D for different values of V_G . (10)

2. Optics [35 points]

- a) Draw a diagram of the attenuation of a silica optical fiber vs. wavelength, and explain the shape of the curve. (7)
- b) Describe three sources of dispersion in a fiber (one sentence each). (6)
- c) We need to design a system to deliver high power laser light of energy 2 eV via a fiber for surgery inside the body. Would you be concerned with dispersion and loss in this application? (4)
- d) Select materials for the core, cladding and substrate of the 2 eV laser, explaining your choices. If there is more than one option, which would be preferable? (8)

e) It would be nice to have a laser based on Si or Si_xGe_{1-x} ($0 \le x \le 1$) because this would be compatible with other silicon devices. What colors of light could you expect from a laser made from SiGe? What is the difficulty with making such a laser? How could this be overcome, and what quality output would the laser produce? (Be concise in this question – no more than 5-6 sentences.) (10)

3. Heterostructures [25 points]

a) Explain concisely the conditions under which a system can act as laser. (No more than 4-5 sentences). Illustrate by describing a ruby <u>or</u> a Nd-YAG laser. (12)

b) Why is a heterostructure better than a homostructure for making a semiconductor laser? (7)

c) A band diagram of a heterostructure is given below. What can you deduce from this diagram about the doping levels of materials A and B? What has happened to materials A and B near the interface? (6)

Material B

Data and Formulae

Figure by MIT OCW.

Properties	Si	GaAs	SiO ₂	Ge
Atoms/cm ³ , molecules/cm ³ x 10 ²²	5.0	4.42	2.27 ^a	
Structure	diamond	zincblende	amorphous	
Lattice constant (nm)	0.543	0.565		
Density (g/cm ³)	2.33	5.32	2.27 ^a	
Relative dielectric constant, ε_r	11.9	13.1	3.9	
Permittivity, $\varepsilon = \varepsilon_r \varepsilon_0 \text{ (farad/cm)} \times 10^{-12}$	1.05	1.16	0.34	
Expansion coefficient (dL/LdT) x (10 ⁻⁶ K)	2.6	6.86	0.5	
Specific Heat (joule/g K)	0.7	0.35	1.0	
Thermal conductivity (watt/cm K)	1.48	0.46	0.014	
Thermal diffusivity (cm ² /sec)	0.9	0.44	0.006	
Energy Gap (eV)	1.12	1.424	~9	0.67
Drift mobility (cm ² /volt-sec)				
Electrons	1500	8500		
Holes	450	400		
Effective density of states				
$(cm^{-3}) \times 10^{19}$				
Conduction band	2.8	0.047		
Valence band	1.04	0.7		
Intrinsic carrier concentration (cm ⁻³)	1.45 x 10 ¹⁰	1.79 x 10 ⁶		

Properties of Si, GaAs, SiO2, and Ge at 300 K

Figure by MIT OCW.

Useful equations

 $g_{c}(E) dE = m_{n} * \sqrt{\{2m_{n} * (E - E_{c})\} / (\pi^{2}h^{3})}$ (h = h-bar) $g_v(E) dE = m_p \sqrt{\{2m_p (E_v - E)\}} / (\pi^2 h^3)$ $f(E) = 1/\{1 + \exp(E - E_c)/kT\}$ $p = n_i \exp (E_i - E_f)/kT$ $n = n_i \exp(E_f - E_i)/kT_i$ $n_i = N_c \exp (E_i - E_c)/kT$ where $N_c = 2\{2\pi m_0 * kT/h^2\}^{3/2}$ $np = n_i^2$ at equilibrium $n_i^2 = N_c N_v \exp (E_v - E_c)/kT = N_c N_v \exp (-E_v)/kT$ $E_i = (E_v + E_c)/2 + 3/4 \text{ kT} \ln (m_p^{*}/m_n^{*})$ $E_r - E_i = kT \ln (n/n_i) = -kT \ln (p/n_i)$ ~ kT ln (N_D / n_i) ntype or - kT ln (N_A / n_i) ptype $1/2 \text{ mv}^2_{\text{thermal}} = 3/2 \text{ kT}$ Drift: thermal velocity $\mathbf{E} = \text{field}$ drift velocity $v_d = \mu E$ Current density (electrons) $J = n e v_d$ Current density (electrons & holes) $J = e (n \mu_n + p \mu_h)E$ Conductivity $\sigma = J/E = e (n \mu_0 + p \mu_b)$ $J = eD_n \nabla n + eD_n \nabla p$ Diffusion Einstein relation: $D_p/\mu_p = kT/e$ at equilibrium R and G $R = G = rnp = r n_i^2$ $dn/dt = dn/dt_{drift} + dn/dt_{driftn} + dn/dt_{thermal RO} + dn/dt_{other RO}$ $dn/dt_{diffn} = 1/e \nabla J_{diffn} = D_n d^2 n/dx^2$ Fick's law $dn/dt = (1/e) \nabla \{J_{drift} + J_{drift}\} + G - R$ so $dn/dt_{thermal} = -n_l/\tau_n$ or $dp/dt_{thermal} = -p_l/\tau_p$ $_{n} = \sqrt{\tau_{n}} D_{n}$, or $_{n} = \sqrt{\tau_{n}} D_{n}$. $\tau_n = 1/rN_A$, or $\tau_p = 1/rN_D$ If traps dominate $\tau = 1/r_2 N_T$ where $r_2 >> r$

pn junction

$$\begin{split} \mathbf{E} &= 1/\epsilon_{o}\epsilon_{r}\int\rho(x)\ dx \qquad \text{where }\rho = e(p-n+N_{D}-N_{A})\\ \mathbf{E} &= -dV/dx\\ eV_{o} &= (E_{f}-E_{i})_{n-type} - (E_{f}-E_{i})_{p-type}\\ &= kT/e\ ln\ (n_{n}/n_{p})\ or\ kT/e\ ln\ (N_{A}N_{D}/n_{i}^{\,2})\\ \mathbf{E} &= N_{A}e\ d_{p}/\epsilon_{o}\epsilon_{r} = N_{D}e\ d_{p}/\epsilon_{o}\epsilon_{r} \qquad \text{at }x = 0\\ V_{o} &= (e/2\epsilon_{o}\epsilon_{r})\ (N_{D}d_{n}^{\,2} + N_{A}d_{p}^{\,2})\\ d_{n} &= \sqrt{\{(2\epsilon_{o}\epsilon_{r}V_{o}/e)\ (N_{A}/(N_{D}(N_{D}+N_{A}))\}\}}\\ d &= d_{p} + d_{n} = \sqrt{\{(2\epsilon_{o}\epsilon_{r}(V_{o}+V_{A})/e)\ (N_{D}+N_{A})/N_{A}N_{D}\}}\\ J &= J_{o}\{exp\ eV_{A}/kT - 1\}\ \text{where }J_{o} = en_{i}^{\,2}\ \{D_{p}/N_{D}\Box_{p} + D_{n}/N_{A}\Box_{n}\}\\ \hline \frac{Transistor}{I_{E}} &= (eD_{p}/w)\ (n_{i}^{\,2}/N_{D,B})\ exp(eV_{EB}/kT)\\ JFET &V_{SD,\ sat} = (eN_{D}t^{2}/8\epsilon_{o}\epsilon_{r}) - (V_{o}+V_{G}) \end{split}$$

Photodiode and photovoltaic

 $I = I_o + I_G \qquad V = I (R_{PV} + R_L)$ $I = I_o \{exp \ eV/kT - 1\} + I_G \qquad Power = IV$

Wavelength $\lambda(\mu m) = 1.24/E_g (eV)$

Band structure

Effective mass: $m^* = \hbar^2 (\partial^2 E / \partial k^2)^{-1}$ Momentum of an electron typically $\pi/a \sim 10^{10} \text{ m}^{-1}$ Momentum of a photon $= 2\pi/\lambda \sim 10^7 \text{ m}^{-1}$ Uncertainly principle $\Delta x \Delta p \ge \hbar$

Lasers

 $\begin{array}{ll} \mbox{probability of absorption} = B_{13}, \mbox{stimulated emission} = B_{31}, \mbox{spontaneous emission} = A_{31} \\ N_3 = N_1 \mbox{ exp (-hv_{31}/kT)} \\ \mbox{Planck } \rho(\nu) d\nu = \{8\pi h\nu^3/c^3 \}/\{\mbox{exp (hv/kT)} - 1\} \ d\nu \\ B_{13} = B_{31} \\ \mbox{and} \quad A_{31}/B_{31} = 8\pi h\nu^3/c^3 \quad (\mbox{Einstein relations}) \\ \mbox{Cavity modes} \qquad \nu = cN/2d, \ N \ \mbox{an integer}. \end{array}$

Fibers

Attenuation (dB) = {10/L} log(P_{in}/P_{out}) L = fiber length Snell's law: n sin ϕ = n' sin ϕ ' Dispersion coefft. D_{λ} = -{ λ_o/c }($\partial^2 n/\partial \lambda^2$)_{$\lambda = \lambda_o$} ps/km.nm $\sigma_t = \sigma_{\lambda} L D_{\lambda}$

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Avogadro constant	$N_A = 6.022 \text{ x } 10^{23} \text{ particles/mole}$
Boltzmann constant	$k = 8.617 \text{ x } 10^{-5} \text{ eV/K} = 1.38 \text{ x } 10^{-23} \text{ J/K}$
Elementary charge	$e = 1.602 \text{ x } 10^{-19} \text{ coulomb}$
Planck constant	$h = 4.136 \text{ x } 10^{-15} \text{ eV} \cdot \text{s}$
	$= 6.626 \text{ x } 10^{-34} \text{ joule } \cdot \text{s}$
Speed of light	$c = 2.998 \text{ x } 10^{10} \text{ cm/s}$
Permittivity (free space)	$\varepsilon_0 = 8.85 \text{ x } 10^{-14} \text{ farad/cm}$
Electron mass	$m = 9.1095 \text{ x } 10^{-31} \text{ kg}$
Coulomb constant	$k_{\rm c} = 8.988 \text{ x } 10^9 \text{ newton-m}^2/(\text{coulomb})^2$
Atomic mass unit	$u = 1.6606 \text{ x } 10^{-27} \text{ kg}$
	e

Useful Combinations

Thermal energy (300 K)	$kT = 0.0258 \text{ eV} \approx 1 \text{ eV}/40$
Photon energy	$E = 1.24 \text{ eV}$ at $\lambda = \mu \text{m}$
Coulomb constant	$k_{\rm c} {\rm e}^2$ 1.44 eV · nm
Permittivity (Si)	$\varepsilon = \varepsilon_r \varepsilon_0 = 1.05 \text{ x } 10^{-12} \text{ farad/cm}$
Permittivity (free space)	$\varepsilon_0 = 55.3 \text{e/V} \cdot \mu \text{m}$

Prefixes

k = kilo = 10^3 ; M = mega = 10^6 ; G = giga = 10^9 ; T = tera = 10^{12} m = milli = 10^{-3} ; μ = micro = 10^{-6} ; n = nano = 10^{-9} ; p = pica = 10^{-12}

Symbols for Units

Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K) Meter (m), Newton (N), Ohm (Ω), Second (s), Siemen (S), Tesla (T)

Volt (V), Watt (W), Weber (Wb)

Conversions

1 nm = 10^{-9} m = 10 Å = 10^{-7} cm; 1 eV = 1.602×10^{-9} Joule = 1.602×10^{-12} erg; 1 eV/particle = 23.06 kcal/mol; 1 newton = 0.102 kg_{force}; 10⁶ newton/m² = 146 psi = 10^{7} dyn/cm²; 1 µm = 10^{-4} cm 0.001 inch = 1 mil = 25.4 µm; 1 bar = 10^{6} dyn/cm² = 10^{5} N/m²; 1 weber/m² = 10^{4} gauss = 1 tesla; 1 pascal = 1 N/m² = 7.5×10^{-3} torr; 1 erg = 10^{-7} joule = 1 dyn-cm

Figure by MIT OCW.