3.15 Electrical, Optical, and Magnetic Materials and Devices
 Caroline A. Ross
 Fall Term, 2005

Exam 2 (5 pages)

Closed book exam. Formulae and data are on the last 3.5 pages of the exam.
This takes $\mathbf{8 0} \mathbf{~ m i n}$ and there are 80 points total. Be brief in your answers and use sketches.
Assume everything is at 300 K unless otherwise noted.

1. MOSFET [20 points]

A MOSFET has the following structure:

a) What happens when you apply a voltage V_{G} to G (when S and D are grounded)? Consider both positive and negative voltages. Illustrate with a sketch of the MOS band diagram. (10)
b) What happens when you apply a negative voltage V_{D} to D, for different values of V_{G} (zero, positive and negative)? (assume S is grounded.) Draw plots of current $I_{S D}$ vs V_{D} for different values of V_{G}. (10)

2. Optics [35 points]

a) Draw a diagram of the attenuation of a silica optical fiber vs. wavelength, and explain the shape of the curve. (7)
b) Describe three sources of dispersion in a fiber (one sentence each). (6)
c) We need to design a system to deliver high power laser light of energy 2 eV via a fiber for surgery inside the body. Would you be concerned with dispersion and loss in this application? (4)
d) Select materials for the core, cladding and substrate of the 2 eV laser, explaining your choices. If there is more than one option, which would be preferable? (8)
e) It would be nice to have a laser based on Si or $\operatorname{Si}_{x} \operatorname{Ge}_{1-x}(0 \leq x \leq 1)$ because this would be compatible with other silicon devices. What colors of light could you expect from a laser made from SiGe ? What is the difficulty with making such a laser? How could this be overcome, and what quality output would the laser produce? (Be concise in this question - no more than 5-6 sentences.) (10)
3. Heterostructures [25 points]
a) Explain concisely the conditions under which a system can act as laser. (No more than 4-5 sentences). Illustrate by describing a ruby or a Nd-YAG laser. (12)
b) Why is a heterostructure better than a homostructure for making a semiconductor laser? (7)
c) A band diagram of a heterostructure is given below. What can you deduce from this diagram about the doping levels of materials A and B? What has happened to materials A and B near the interface? (6)

Material B

Data and Formulae

Figure by MIT OCW.

Properties	Si	GaAs	SiO_{2}	Ge
Atoms $/ \mathrm{cm}^{3}$, molecules $/ \mathrm{cm}^{3} \times 10^{22}$ Structure Lattice constant (nm) Density ($\mathrm{g} / \mathrm{cm}^{3}$) Relative dielectric constant, ε_{r} Permittivity, $\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}(\mathrm{farad} / \mathrm{cm}) \times 10^{-12}$ Expansion coefficient (dL/LdT) $\times\left(10^{-6} \mathrm{~K}\right)$ Specific Heat (joule/g K) Thermal conductivity (watt/cm K) Thermal diffusivity ($\mathrm{cm}^{2} / \mathrm{sec}$) Energy Gap (eV) Drift mobility ($\mathrm{cm}^{2} / \mathrm{volt-sec}$) Electrons Holes Effective density of states $\left(\mathrm{cm}^{-3}\right) \times 10^{19}$ Conduction band Valence band Intrinsic carrier concentration $\left(\mathrm{cm}^{-3}\right)$	5.0 diamond 0.543 2.33 11.9 1.05 2.6 0.7 1.48 0.9 1.12 1500 450 2.8 1.04 1.45×10^{10}	4.42 zincblende 0.565 5.32 13.1 1.16 6.86 0.35 0.46 0.44 1.424 8500 400 0.047 0.7 1.79×10^{6}	2.27^{a} amorphous 2.27^{a} 3.9 0.34 0.5 1.0 0.014 0.006 ~ 9	0.67

Properties of Si, GaAs, SiO2, and Ge at 300 K
Figure by MIT OCW.

Useful equations

```
\(\left.\mathrm{g}_{\mathrm{c}}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{n}}{ }^{*} \sqrt{ } / 2 \mathrm{~m}_{\mathrm{n}}{ }^{*}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right\} /\left(\pi^{2} \mathrm{~h}^{3}\right)\)
(h = h-bar)
\(\mathrm{g}_{v}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{p}}{ }^{*} \sqrt{ }\left\{2 \mathrm{~m}_{\mathrm{p}}{ }^{*}\left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}\right)\right\} /\left(\pi^{2} \mathrm{~h}^{3}\right)\)
\(\mathrm{f}(\mathrm{E})=1 /\left\{1+\exp \left(\mathrm{E}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}\right\}\)
\(\mathrm{n}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{T}}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}, \quad \mathrm{p}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}\)
\(\mathrm{n}_{1}=\mathrm{N}_{\mathrm{e}} \exp \left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{c}}\right) / \mathrm{kT}\) where \(\mathrm{N}_{\mathrm{c}}=2\left\{2 \pi \mathrm{~m}_{\mathrm{n}}{ }^{3} \mathrm{kT} / \mathrm{h}^{2}\right\}^{3 / 2}\)
\(\mathrm{np}=\mathrm{n}_{1}{ }^{2}\) at equilibrium
\(\mathrm{n}_{\mathrm{i}}{ }^{2}=\mathrm{N}_{\mathrm{e}} \mathrm{N}_{\mathrm{v}} \exp \left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}_{\mathrm{e}}\right) / \mathrm{kT}=\mathrm{N}_{\mathrm{c}} \mathrm{N}_{\mathrm{v}} \exp \left(-\mathrm{E}_{\mathrm{v}}\right) / \mathrm{kT}\)
\(\mathrm{E}_{\mathrm{i}}=\left(\mathrm{E}_{\mathrm{V}}+\mathrm{E}_{\mathrm{c}}\right) / 2+3 / 4 \mathrm{kT} \ln \left(\mathrm{m}_{\mathrm{p}}{ }^{3} / \mathrm{m}_{\mathrm{a}}{ }^{3}\right)\)
\(\mathrm{E}_{\mathrm{T}}-\mathrm{E}_{\mathrm{i}}=\mathrm{kT} \ln \left(\mathrm{n} / \mathrm{n}_{\mathrm{i}}\right)=-\mathrm{kT} \ln \left(\mathrm{p}^{\prime} \mathrm{n}_{\mathrm{i}}\right)\)
    \(\sim \mathrm{KT} \ln \left(\mathrm{N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}\right)\) ntype or \(-\mathrm{kT} \ln \left(\mathrm{N}_{\mathrm{A}} / \mathrm{n}_{\mathrm{i}}\right)\) ptype
```

Drift: thermal velocity drift velocity
Current density (electrons)
Current density (electrons \& holes)
Conductivity
Diffusion
Einstein relation:
R and G
Fick's law $\quad \mathrm{dn} / \mathrm{dt}_{\text {diefn }}=1 / \mathrm{e} \nabla \mathrm{J}_{\text {diffe }}=\mathrm{D}_{\mathrm{n}} \mathrm{d}^{2} \mathrm{n} / \mathrm{dx}^{2}$

$$
\mathrm{dn} / \mathrm{dt}=\mathrm{dn} / \mathrm{dt}_{\mathrm{dint}}+\mathrm{dn} / \mathrm{dt}_{\mathrm{diffin}}+\mathrm{dn} / \mathrm{dt}_{\text {thernal } R 0}+\mathrm{dn} / \mathrm{dt}_{\mathrm{dther}} \mathrm{RO}_{0}
$$

so $\quad \mathrm{dn} / \mathrm{dt}=(\mathrm{I} / \mathrm{e}) \nabla\left\{\mathrm{J}_{\text {drift }}+\mathrm{J}_{\text {dffin }}\right\}+\mathrm{G}-\mathrm{R}$
$\mathrm{dn} / \mathrm{dt}_{\text {diemal }}=-\mathrm{n}_{1} / \tau_{\mathrm{e}} \quad$ or $\mathrm{dp} / \mathrm{dt}_{\text {acrmal }}=-\mathrm{p}_{1} / \mathrm{T}_{\mathrm{p}}$
$\tau_{\mathrm{n}}=1 / \mathrm{rN}_{\mathrm{A}}$, or $\tau_{\mathrm{p}}=1 / \mathrm{r} \mathrm{N}_{\mathrm{D}}$

$$
\mathrm{n}=\sqrt{ } \tau_{\mathrm{n}} \mathrm{D}_{\mathrm{m}} \text {, or } \quad \mathrm{p}=\sqrt{ } \tau_{\mathrm{p}} \mathrm{D}_{\mathrm{p}} .
$$

If traps dominate $\tau=1 / \mathrm{r}_{2} \mathrm{~N}_{\mathrm{T}}$ where $\mathrm{r}_{2} \gg \mathrm{r}$
pn junction

$$
\begin{aligned}
& \mathbf{E}=1 / \varepsilon_{0} \varepsilon_{\mathrm{r}} \int \rho(\mathrm{x}) \mathrm{dx} \quad \text { where } \rho=\mathrm{e}\left(\mathrm{p}-\mathrm{n}+\mathrm{N}_{\mathrm{D}}-\mathrm{N}_{\mathrm{A}}\right) \\
& \mathbf{E}=-\mathrm{dV} / \mathrm{dx} \\
& e V_{o}=\left(E_{f}-E_{i}\right)_{\text {n-type }}-\left(E_{f}-E_{i}\right)_{p-\text { type }} \\
& =\mathrm{kT} / \mathrm{e} \ln \left(\mathrm{n}_{\mathrm{n}} / \mathrm{n}_{\mathrm{p}}\right) \text { or } \mathrm{kT} / \mathrm{e} \ln \left(\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}^{2}\right) \\
& \mathbf{E}=\mathrm{N}_{\mathrm{A}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}}=\mathrm{N}_{\mathrm{D}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}} \quad \text { at } \mathrm{x}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\left(\mathrm{e} / 2 \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}}\right)\left(\mathrm{N}_{\mathrm{D}} \mathrm{~d}_{\mathrm{n}}{ }^{2}+\mathrm{N}_{\mathrm{A}} \mathrm{~d}_{\mathrm{p}}{ }^{2}\right) \\
& \mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}} \mathrm{~V}_{\mathrm{o}} / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{D}}\left(\mathrm{~N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right)\right)\right\}\right. \\
& \mathrm{d}=\mathrm{d}_{\mathrm{p}}+\mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{0} \varepsilon_{\mathrm{r}}\left(\mathrm{~V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{A}}\right) / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right) / \mathrm{N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}\right\} \\
& \mathrm{J}=\mathrm{J}_{\mathrm{o}}\left\{\operatorname{expeV} \mathrm{~V}_{\mathrm{A}} / \mathrm{kT}-1\right\} \text { where } \mathrm{J}_{\mathrm{o}}=\mathrm{en}_{\mathrm{i}}^{2}\left\{\mathrm{D}_{\mathrm{p}} / \mathrm{N}_{\mathrm{D}}{ }_{\mathrm{p}}+\mathrm{D}_{\mathrm{n}} / \mathrm{N}_{\mathrm{A}}{ }_{\mathrm{n}}\right\} \\
& \text { Transistor BJT gain } \beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}} \sim \mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}=\mathrm{N}_{\mathrm{A}, \mathrm{E}} / \mathrm{N}_{\mathrm{D}, \mathrm{~B}} \\
& \mathrm{I}_{\mathrm{E}}=\left(\mathrm{eD} \mathrm{D}_{\mathrm{p}} / \mathrm{w}\right)\left(\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{D}, \mathrm{~B}}\right) \exp \left(\mathrm{eV}_{\mathrm{EB}} / \mathrm{kT}\right) \\
& \mathrm{V}_{\mathrm{SD}, \text { sat }}=\left(\mathrm{eN}_{\mathrm{D}} \mathrm{t}^{2} / 8 \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}}\right)-\left(\mathrm{V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{G}}\right)
\end{aligned}
$$

JFET

Photodiode and photovoltaic

$$
\begin{array}{lr}
\mathrm{I}=\mathrm{I}_{\mathrm{o}}+\mathrm{I}_{\mathrm{G}} & \mathrm{~V}=\mathrm{I}\left(\mathrm{R}_{\mathrm{PV}}+\mathrm{R}_{\mathrm{L}}\right) \\
\mathrm{I}=\mathrm{I}_{\mathrm{o}}\{\operatorname{expeV} / \mathrm{kT}-1\}+\mathrm{I}_{\mathrm{G}} \quad \text { Power }=\mathrm{IV}
\end{array}
$$

Wavelength $\quad \lambda(\mu \mathrm{m})=1.24 / \mathrm{E}_{\mathrm{g}}(\mathrm{eV})$

Band structure

Effective mass: $\quad \mathrm{m}^{*}=\hbar^{2}\left(\partial^{2} E / \partial k^{2}\right)^{-1}$
Momentum of an electron typically $\pi / \mathrm{a} \sim 10^{10} \mathrm{~m}^{-1}$
Momentum of a photon $=2 \pi / \lambda \sim 10^{7} \mathrm{~m}^{-1}$
Uncertainly principle $\Delta x \Delta p \geq \hbar$
Lasers
probability of absorption $=B_{13}$, stimulated emission $=B_{31}$, spontaneous emission $=A_{31}$
$\mathrm{N}_{3}=\mathrm{N}_{1} \exp \left(-\mathrm{h} \nu_{31} / \mathrm{kT}\right)$
Planck $\rho(v) \mathrm{d} v=\left\{8 \pi h v^{3} / \mathrm{c}^{3}\right\} /\{\exp (\mathrm{h} v / \mathrm{kT})-1\} \mathrm{d} v$
$\mathrm{B}_{13}=\mathrm{B}_{31}$
and $\quad \mathrm{A}_{31} / \mathrm{B}_{31}=8 \pi h v^{3} / \mathrm{c}^{3} \quad$ (Einstein relations)
Cavity modes $\quad v=\mathrm{cN} / 2 \mathrm{~d}, \mathrm{~N}$ an integer.

Fibers

Attenuation $(\mathrm{dB}) \quad=\{10 / \mathrm{L}\} \log \left(\mathrm{P}_{\text {in }} / \mathrm{P}_{\text {out }}\right) \quad \mathrm{L}=$ fiber length
Snell's law:
$\mathrm{n} \sin \phi=\mathrm{n}^{\prime} \sin \phi^{\prime}$
Dispersion coefft. $\mathrm{D}_{\lambda}=-\left\{\lambda_{o} / c\right\}\left(\partial^{2} n / \partial \lambda^{2}\right)_{\lambda=\lambda_{o}} \mathrm{ps} / \mathrm{km} . \mathrm{nm}$

$$
\sigma_{t}=\sigma_{\lambda} L D_{\lambda}
$$

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Avogadro constant
Boltzmann constant
Elementary charge
Planck constant

Speed of light
Permittivity (free space)
Electron mass
Coulomb constant
Atomic mass unit
Useful Combinations
Thermal energy (300 K)
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$ particles/mole
$k=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$e=1.602 \times 10^{-19}$ coulomb
$h=4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
$=6.626 \times 10^{-34}$ joule $\cdot \mathrm{s}$
$c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
$\varepsilon_{0}=8.85 \times 10^{-14} \mathrm{farad} / \mathrm{cm}$
$m=9.1095 \times 10^{-31} \mathrm{~kg}$
$k_{\mathrm{c}}=8.988 \times 10^{9}$ newton $-\mathrm{m}^{2} /(\text { coulomb })^{2}$
$u=1.6606 \times 10^{-27} \mathrm{~kg}$

Photon energy
$k T=0.0258 \mathrm{eV} \simeq 1 \mathrm{eV} / 40$
$E=1.24 \mathrm{eV}$ at $\lambda=\mu \mathrm{m}$
Coulomb constant
Permittivity (Si)
Permittivity (free space)
$k_{\mathrm{c}} \mathrm{e}^{2} 1.44 \mathrm{eV} \cdot \mathrm{nm}$
$\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}=1.05 \times 10^{-12} \mathrm{farad} / \mathrm{cm}$
$\varepsilon_{0}=55.3 \mathrm{e} / \mathrm{V} \cdot \mu \mathrm{m}$

Prefixes

$\mathrm{k}=$ kilo $=10^{3} ; \mathrm{M}=$ mega $=10^{6} ; \mathrm{G}=$ giga $=10^{9} ; \mathrm{T}=$ tera $=10^{12}$
$\mathrm{m}=$ milli $=10^{-3} ; \mu=$ micro $=10^{-6} ; n=$ nano $=10^{-9} ; p=$ pica $=10^{-12}$

Symbols for Units

Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K)
Meter (m), Newton (N), Ohm (Ω), Second (s), Siemen (S), Tesla (T)
Volt (V), Watt (W), Weber (Wb)

Conversions

$1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \AA=10^{-7} \mathrm{~cm} ; 1 \mathrm{eV}=1.602 \times 10^{-9}$ Joule $=1.602 \times 10^{-12} \mathrm{erg} ;$
$1 \mathrm{eV} /$ particle $=23.06 \mathrm{kcal} / \mathrm{mol} ; 1$ newton $=0.102 \mathrm{~kg}_{\text {force }}$;
10^{6} newton $/ \mathrm{m}^{2}=146 \mathrm{psi}=10^{7} \mathrm{dyn} / \mathrm{cm}^{2} ; 1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm} 0.001$ inch $=1 \mathrm{mil}=25.4 \mu \mathrm{~m}$;
$1 \mathrm{bar}=10^{6} \mathrm{dyn} / \mathrm{cm}^{2}=10^{5} \mathrm{~N} / \mathrm{m}^{2} ; 1$ weber $/ \mathrm{m}^{2}=10^{4}$ gauss = 1 tesla;
1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2}=7.5 \times 10^{-3}$ torr; $1 \mathrm{erg}=10^{-7}$ joule $=1$ dyn -cm

