3.15 Electrical, Optical, and Magnetic Materials and Devices

Caroline A. Ross

Fall Term, 2006

Exam 2 (6 pages)

Closed book exam. Formulae and data are on the last 4 pages of the exam.
This takes $\mathbf{8 0} \mathbf{~ m i n}$ and there are 80 points total. Be brief in your answers and use sketches. Assume everything is at 300 K unless otherwise noted.

1. [25 points] A JFET is constructed like this: the two gate regions are $n+$ and the rest of the material is p type.

a) Assume that the source is grounded (at zero volts). Draw a sketch of how the current I_{D} flowing out of the drain varies with voltage V_{D} when the gate is at zero volts. Consider both positive and negative values of V_{D} and explain the shape of your graph. (3-4 sentences) [9]
b) Now draw another sketch showing again I_{D} vs. V_{D} but this time draw different graphs corresponding to different values of gate voltage V_{G} (both positive and negative). Explain briefly how gate voltage affects the I-V plot. [10]
c) Give three reasons why a MOSFET is preferable to a JFET. [6]
2. [33 points] In one of the problem sets we considered two ways of making white light using an LED. Here we will consider a third method. In this new scheme, the device looks like this:

a) What is the purpose of the phosphor-coated cup in this device? Explain how you can get white light. [6]
b) What color LED would you use? Choose a possible material and substrate for the LED, explaining your choice. [7] (some of the data at the end of the exam may be helpful)
c) Draw a possible band structure for your LED, in the unbiased case, and explain how bias affects the band structure. [7]
d) Explain concisely the differences between the spectral output of an LED, such as the one you just drew, compared with a semiconductor laser. [6]
e) If your LED is only 0.1 mm long, how does this affect its output? [7]
3. [22 points] We are designing a photovoltaic system. The solar cell we have available produces an output as shown below: its internal resistance is 0.2 ohms.

a) Estimate the maximum power we can produce from the solar cell. [6]
b) What load resistance would you use to maximize the output power? [4]
c) Mention three methods to improve the efficiency of a solar cell. (1 sentence each). [6]
d) Solar cells can be made from amorphous silicon, and are commonly used in devices such as calculators. Explain the reason for using amorphous Si in place of crystal Si (3-4 sentences). [6]

Figure by MIT OCW.

Figure by MIT OCW.

Properties of $\mathrm{Si}, \mathrm{GaAs}, \mathrm{SiO}_{2}$, and Ge at 300 K
Figure by MIT OCW.

Useful equations

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{c}}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{n}}{ }^{*} \sqrt{ }\left\{2 \mathrm{~m}_{\mathrm{n}}{ }^{*}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right\} /\left(\pi^{2} \underline{\mathrm{~h}}^{3}\right) \quad(\underline{\mathrm{h}}=\mathrm{h} \text {-bar }) \\
& \mathrm{g}_{\mathrm{v}}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{p}} * \sqrt{ }\left\{2 \mathrm{~m}_{\mathrm{p}} *\left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}\right)\right\} /\left(\pi^{2} \underline{\underline{h}}^{3}\right) \\
& \mathrm{f}(\mathrm{E})=1 /\left\{1+\exp \left(\mathrm{E}-\mathrm{E}_{\mathrm{f}}\right) / \mathrm{kT}\right\} \\
& \mathrm{n}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}, \quad \mathrm{p}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}\right) / \mathrm{kT} \\
& n_{i}=N_{c} \exp \left(E_{i}-E_{c}\right) / k T \quad \text { where } N_{c}=2\left\{2 \pi m_{n} * k T / h^{2}\right\}^{3 / 2} \\
& n \mathrm{n}=\mathrm{n}_{\mathrm{i}}^{2} \text { at equilibrium } \\
& n_{i}^{2}=N_{c} N_{v} \exp \left(E_{v}-E_{c}\right) / k T=N_{c} N_{v} \exp \left(-E_{g}\right) / k T \\
& \mathrm{E}_{\mathrm{i}}=\left(\mathrm{E}_{\mathrm{v}}+\mathrm{E}_{\mathrm{c}}\right) / 2+3 / 4 \mathrm{kT} \ln \left(\mathrm{~m}_{\mathrm{p}}{ }^{*} / \mathrm{m}_{\mathrm{n}}{ }^{*}\right) \\
& \mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{kT} \ln \left(\mathrm{n} / \mathrm{n}_{\mathrm{i}}\right)=-\mathrm{kT} \ln \left(\mathrm{p} / \mathrm{n}_{\mathrm{i}}\right) \\
& \sim \mathrm{kT} \ln \left(\mathrm{~N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}\right) \text { type or }-\mathrm{kT} \ln \left(\mathrm{~N}_{\mathrm{A}} / \mathrm{n}_{\mathrm{i}}\right) \text { type }
\end{aligned}
$$

Drift: thermal velocity

$$
1 / 2 \mathrm{mv}^{2}{ }_{\text {thermal }}^{2}=3 / 2 \mathrm{kT}
$$

drift velocity
Current density (electrons)
Current density (electrons \& holes)
Conductivity
Diffusion
Einstein relation:
R and G
Fisk's law $\quad d n / \mathrm{dt}_{\text {diff }}=1 / e \nabla J_{\text {diff }}=D_{n} d^{2} n / d x^{2}$
so $\quad \mathrm{dn} / \mathrm{dt}=(1 / \mathrm{e}) \nabla\left\{\mathrm{J}_{\text {drift }}+\mathrm{J}_{\text {diff }}\right\}+\mathrm{G}-\mathrm{R}$
$\mathrm{dn} / \mathrm{dt}_{\text {thermal }}=-\mathrm{n}_{1} / \tau_{\mathrm{n}} \quad$ or $\quad \mathrm{dp} / \mathrm{dt}_{\text {thermal }}=-\mathrm{p}_{\mathrm{l}} / \tau_{\mathrm{p}}$
$\tau_{\mathrm{n}}=1 / \mathrm{rN}_{\mathrm{A}}$, or $\tau_{\mathrm{p}}=1 / \mathrm{rN}_{\mathrm{D}}$

$$
\mathrm{L}_{\mathrm{n}}=\sqrt{ } \tau_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}, \text { or } \mathrm{L}_{\mathrm{p}}=V_{\tau_{\mathrm{p}}} \mathrm{D}_{\mathrm{p}}
$$

If traps dominate $\tau=1 / \mathrm{r}_{2} \mathrm{~N}_{\mathrm{T}}$ where $\mathrm{r}_{2} \gg \mathrm{r}$
$\mathrm{J}=\mathrm{ne} \mathrm{v}_{\mathrm{d}}$
$\mathrm{J}=\mathrm{e}\left(\mathrm{n} \mu_{\mathrm{n}}+\mathrm{p} \mu_{\mathrm{h}}\right) \mathbf{E}$
$\sigma=\mathrm{J} / \mathbf{E}=\mathrm{e}\left(\mathrm{n} \mu_{\mathrm{n}}+\mathrm{p} \mu_{\mathrm{h}}\right)$
$\mathrm{J}=\mathrm{e}_{\mathrm{n}} \nabla \mathrm{n}+\mathrm{eD}_{\mathrm{p}} \nabla \mathrm{p}$
$\mathrm{D}_{\mathrm{n}} / \mu_{\mathrm{n}}=\mathrm{kT} / \mathrm{e}$
$\mathrm{R}=\mathrm{G}=\mathrm{rnp}=\mathrm{r} \mathrm{n}_{\mathrm{i}}^{2} \quad$ at equilibrium
$\mathrm{dn} / \mathrm{dt}=\mathrm{dn} / \mathrm{dt}_{\text {drift }}+\mathrm{dn} / \mathrm{dt}_{\text {diff }}+\mathrm{dn} / \mathrm{dt}_{\text {thermal RG }}+\mathrm{dn} / \mathrm{dt}_{\text {other RG }}$
pn junction

$$
\begin{aligned}
& \mathbf{E}=1 / \varepsilon_{0} \varepsilon_{\mathrm{r}} \int \rho(\mathrm{x}) \mathrm{dx} \quad \text { where } \rho=\mathrm{e}\left(\mathrm{p}-\mathrm{n}+\mathrm{N}_{\mathrm{D}}-\mathrm{N}_{\mathrm{A}}\right) \\
& \mathbf{E}=-\mathrm{dV} / \mathrm{dx} \\
& e V_{o}=\left(E_{f}-E_{i}\right)_{n-t y p e}-\left(E_{f}-E_{i}\right)_{p-t y p e} \\
& =\mathrm{kT} / \mathrm{e} \ln \left(\mathrm{n}_{\mathrm{n}} / \mathrm{n}_{\mathrm{p}}\right) \text { or } \mathrm{kT} / \mathrm{e} \ln \left(\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}{ }^{2}\right) \\
& \mathbf{E}=\mathrm{N}_{\mathrm{A}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{0} \varepsilon_{\mathrm{r}}=\mathrm{N}_{\mathrm{D}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{0} \varepsilon_{\mathrm{r}} \quad \text { at } \mathrm{x}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\left(\mathrm{e} / 2 \varepsilon_{0} \varepsilon_{\mathrm{r}}\right)\left(\mathrm{N}_{\mathrm{D}} \mathrm{~d}_{\mathrm{n}}{ }^{2}+\mathrm{N}_{\mathrm{A}} \mathrm{~d}_{\mathrm{p}}{ }^{2}\right) \\
& \mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}} \mathrm{~V}_{\mathrm{o}} / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{D}}\left(\mathrm{~N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right)\right)\right\}\right. \\
& \mathrm{d}=\mathrm{d}_{\mathrm{p}}+\mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{0} \varepsilon_{\mathrm{r}}\left(\mathrm{~V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{A}}\right) / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right) / \mathrm{N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}\right\} \\
& \mathrm{J}=\mathrm{J}_{\mathrm{o}}\left\{\exp \mathrm{eV}_{\mathrm{A}} / \mathrm{kT}-1\right\} \text { where } \mathrm{J}_{\mathrm{o}}=\mathrm{en}_{\mathrm{i}}^{2}\left\{\mathrm{D}_{\mathrm{p}} / \mathrm{N}_{\mathrm{D}} \mathrm{~L}_{\mathrm{p}}+\mathrm{D}_{\mathrm{n}} / \mathrm{N}_{\mathrm{A}} \mathrm{~L}_{\mathrm{n}}\right\} \\
& \text { Transistor BJT gain } \beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}} \sim \mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}=\mathrm{N}_{\mathrm{A}, \mathrm{E}} / \mathrm{N}_{\mathrm{D}, \mathrm{~B}} \\
& \mathrm{I}_{\mathrm{E}}=\left(\mathrm{eD}_{\mathrm{p}} / \mathrm{w}\right)\left(\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{D}, \mathrm{~B}}\right) \exp \left(\mathrm{eV}_{\mathrm{EB}} / \mathrm{kT}\right) \\
& \text { JFET } \quad \mathrm{V}_{\mathrm{SD}, \text { sat }}=\left(\mathrm{eN}_{\mathrm{D}} \mathrm{t}^{2} / 8 \varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}}\right)-\left(\mathrm{V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{G}}\right)
\end{aligned}
$$

Photodiode and photovoltaic

$$
\begin{array}{lc}
\mathrm{I}=\mathrm{I}_{\mathrm{o}}+\mathrm{I}_{\mathrm{G}} & \mathrm{~V}=\mathrm{I}\left(\mathrm{R}_{\mathrm{PV}}+\mathrm{R}_{\mathrm{L}}\right) \\
\mathrm{I}=\mathrm{I}_{\mathrm{o}}\{\operatorname{expeV} / \mathrm{kT}-1\}+\mathrm{I}_{\mathrm{G}} & \text { Power }=\mathrm{IV}
\end{array}
$$

Wavelength

$$
\lambda(\mu \mathrm{m})=1.24 / \mathrm{E}_{\mathrm{g}}(\mathrm{eV})
$$

Band structure

Effective mass: $\quad \mathrm{m}^{*}=\hbar^{2}\left(\partial^{2} E / \partial k^{2}\right)^{-1}$
Momentum of an electron typically $\pi / \mathrm{a} \sim 10^{10} \mathrm{~m}^{-1}$
Momentum of a photon $=2 \pi / \lambda \sim 10^{7} \mathrm{~m}^{-1}$
Uncertainly principle $\Delta x \Delta p \geq \hbar$
Lasers
probability of absorption $=B_{13}$, stimulated emission $=B_{31}$, spontaneous emission $=A_{31}$
$\mathrm{N}_{3}=\mathrm{N}_{1} \exp \left(-\mathrm{h} v_{31} / \mathrm{kT}\right)$
Planck $\rho(v) \mathrm{d} v=\left\{8 \pi \mathrm{~h} v^{3} / \mathrm{c}^{3}\right\} /\{\exp (\mathrm{h} v / \mathrm{kT})-1\} \mathrm{d} v$

$$
\mathrm{B}_{13}=\mathrm{B}_{31}
$$

and $\quad \mathrm{A}_{31} / \mathrm{B}_{31}=8 \pi \mathrm{~h} v^{3} / \mathrm{c}^{3} \quad$ (Einstein relations)
Cavity modes $\quad v=\mathrm{cN} / 2 \mathrm{~d}, \mathrm{~N}$ an integer.
Fibers
Attenuation $(\mathrm{dB}) \quad=\{10 / \mathrm{L}\} \log \left(\mathrm{P}_{\text {in }} / \mathrm{P}_{\text {out }}\right) \quad \mathrm{L}=$ fiber length
Snell's law: $\quad \mathrm{n} \sin \phi=\mathrm{n}$ ' $\sin \phi$ '
Dispersion coefft. $\mathrm{D}_{\lambda}=-\left\{\lambda_{o} / c\right\}\left(\partial^{2} n / \partial \lambda^{2}\right)_{\lambda=\lambda_{0}} \mathrm{ps} / \mathrm{km} . \mathrm{nm}$

$$
\sigma_{t}=\sigma_{\lambda} L D_{\lambda}
$$

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Avogadro constant
Boltzmann constant
Elementary charge
Planck constant

Speed of light
Permittivity (free space)
Electron mass
Coulomb constant
Atomic mass unit

Useful Combinations

Thermal energy (300 K)
Photon energy
Coulomb constant
Permittivity (Si)
Permittivity (free space)
Prefixes
$\mathrm{k}=$ kilo $=10^{3} ; \mathrm{M}=$ mega $=10^{6} ; \mathrm{G}=$ giga $=10^{9} ; \mathrm{T}=$ tera $=10^{12}$
$\mathrm{m}=$ milli $=10^{-3} ; \mu=$ micro $=10^{-6} ; n=$ nano $=10^{-9} ; p=$ pica $=10^{-12}$

Symbols for Units

Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K)
Meter (m), Newton (N), Ohm (Ω), Second (s), Siemen (S), Tesla (T)
Volt (V), Watt (W), Weber (Wb)

Conversions

$1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \AA=10^{-7} \mathrm{~cm} ; 1 \mathrm{eV}=1.602 \times 10^{-9}$ Joule $=1.602 \times 10^{-12} \mathrm{erg} ;$
$1 \mathrm{eV} /$ particle $=23.06 \mathrm{kcal} / \mathrm{mol} ; 1$ newton $=0.102 \mathrm{~kg}_{\text {force }}$;
10^{6} newton $/ \mathrm{m}^{2}=146 \mathrm{psi}=10^{7} \mathrm{dyn} / \mathrm{cm}^{2} ; 1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm} 0.001 \mathrm{inch}=1 \mathrm{mil}=25.4 \mu \mathrm{~m}$;
$1 \mathrm{bar}=10^{6} \mathrm{dyn} / \mathrm{cm}^{2}=10^{5} \mathrm{~N} / \mathrm{m}^{2} ; 1$ weber $/ \mathrm{m}^{2}=10^{4}$ gauss = 1 tesla;
1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2}=7.5 \times 10^{-3}$ torr; $1 \mathrm{erg}=10^{-7}$ joule $=1$ dyn -cm

