3.15 Electrical, Optical, and Magnetic Materials and Devices Caroline A. Ross Fall Term, 2006

Exam 2 (6 pages)

Closed book exam. Formulae and data are on the last 4 pages of the exam. <u>This takes **80 min** and there are 80 points total</u>. Be brief in your answers and use sketches. *Assume everything is at 300K unless otherwise noted*.

1. [25 points] A JFET is constructed like this: the two gate regions are n+ and the rest of the material is p type.

- a) Assume that the source is grounded (at zero volts). Draw a sketch of how the current I_D flowing out of the drain varies with voltage V_D when the gate is at zero volts. Consider both positive and negative values of V_D and explain the shape of your graph. (3-4 sentences) [9]
- b) Now draw another sketch showing again I_D vs. V_D but this time draw different graphs corresponding to different values of gate voltage V_G (both positive and negative). Explain briefly how gate voltage affects the I-V plot. [10]
- c) Give three reasons why a MOSFET is preferable to a JFET. [6]
- **2. [33 points]** In one of the problem sets we considered two ways of making white light using an LED. Here we will consider a third method. In this new scheme, the device looks like this:

- a) What is the purpose of the phosphor-coated cup in this device? Explain how you can get white light. [6]
- b) What color LED would you use? Choose a possible material and substrate for the LED, explaining your choice. [7] (some of the data at the end of the exam may be helpful)
- c) Draw a possible band structure for your LED, in the unbiased case, and explain how bias affects the band structure. [7]
- d) Explain concisely the differences between the spectral output of an LED, such as the one you just drew, compared with a semiconductor laser. [6]
- e) If your LED is only 0.1 mm long, how does this affect its output? [7]
- **3. [22 points]** We are designing a photovoltaic system. The solar cell we have available produces an output as shown below: its internal resistance is 0.2 ohms.

- a) Estimate the maximum power we can produce from the solar cell. [6]
- b) What load resistance would you use to maximize the output power? [4]
- c) Mention three methods to improve the efficiency of a solar cell. (1 sentence each). [6]
- d) Solar cells can be made from amorphous silicon, and are commonly used in devices such as calculators. Explain the reason for using amorphous Si in place of crystal Si (3-4 sentences). [6]

Data and Formulae

Figure by MIT OCW.

Figure by MIT OCW.

Properties	Si	GaAs	SiO ₂	Ge
Atoms/cm ³ , molecules/cm ³ x 10 ²²	5.0	4.42	2.27 ^a	
Structure	diamond	zincblende	amorphous	
Lattice constant (nm)	0.543	0.565		
Density (g/cm ³)	2.33	5.32	2.27 ^a	
Relative dielectric constant, ε_r	11.9	13.1	3.9	
Permittivity, $\varepsilon = \varepsilon_r \varepsilon_0$ (farad/cm) x 10 ⁻¹²	1.05	1.16	0.34	
Expansion coefficient (dL/LdT) x (10 ⁻⁶ K)	2.6	6.86	0.5	
Specific Heat (joule/g K)	0.7	0.35	1.0	
Thermal conductivity (watt/cm K)	1.48	0.46	0.014	
Thermal diffusivity (cm ² /sec)	0.9	0.44	0.006	
Energy Gap (eV)	1.12	1.424	~9	0.67
Drift mobility (cm ² /volt-sec)				
Electrons	1500	8500		
Holes	450	400		
Effective density of states				
(cm ⁻³) x 10 ¹⁹				
Conduction band	2.8	0.047		
Valence band	1.04	0.7		
Intrinsic carrier concentration (cm ⁻³)	1.45 x 10 ¹⁰	1.79 x 10 ⁶		

Figure by MIT OCW.

Useful equations

$g_{c}(E) dE = m_{n} * \sqrt{2m_{n} * (E - E)}$	(E_c) / $(\pi^2 \underline{h}^3)$	(<u>h</u> = h-bar)			
$g_v(E) dE = m_p * \sqrt{\{2m_p * (E_v - E)\} / (\pi^2 \underline{h}^3)}$					
$f(E) = 1/\{1 + \exp(E - E_f)/kT\}$					
$n = n_i \exp (E_f - E_i)/kT$, $p = n_i \exp (E_i - E_f)/kT$					
$n_i = N_c \exp (E_i - E_c)/kT$ where $N_c = 2 \{2\pi m_n * kT/h^2\}^{3/2}$					
$np = n_i^2$ at equilibrium					
$n_i^2 = N_c N_v \exp (E_v - E_c)/kT = N_c N_v \exp (-E_g)/kT$					
$E_i = (E_v + E_c)/2 + 3/4 \text{ kT ln} (m_p */m_n *)$					
$L_1 = (L_V + L_C)/2 + 3/4$ KT III (IIIp / IIIn)					
$E_{f} - E_{i} = kT \ln (n/n_{i}) = -kT \ln (p/n_{i})$					
$\sim kT \ln (N_D / n_i)$ ntype or $-kT \ln (N_A / n_i)$ ptype					
		·/ 1 J1			
Drift: thermal velocity	$1/2 \text{ mv}^2_{\text{therm}}$	$_{al} = 3/2 \ kT$			
drift velocity	$v_d = \mu E$ $E =$	field			
anteveneery	$v_d - \mu E$ $E -$	lielu			
2	$J = n e v_d$	lield			
5	$J = n e v_d$				
Current density (electrons)	$J = n e v_d$				
Current density (electrons) Current density (electrons & holes)	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + p \mu_h)E$	p μ _h)			
Current density (electrons) Current density (electrons & holes) Conductivity <u>Diffusion</u>	$J = n e v_d$ $J = e (n \mu_n + p \mu_h) \mathbf{E}$ $\sigma = J/\mathbf{E} = e (n \mu_n + J = eD_n \nabla n + eD_p \nabla J$	p μ _h)			
Current density (electrons) Current density (electrons & holes) Conductivity <u>Diffusion</u> Einstein relation:	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + J = eD_n \nabla n + eD_p \nabla D_n/\mu_n = kT/e$	p μ _h) 7p			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation: R and G $R = G = rnp = 0$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + D_p V)$ $D_n/\mu_n = kT/e$ $= r n_i^2 at equilibrium$	p μ _h) ⁷ p ium			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation: R and G $R = G = rnp = dn/dt$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + p \mu_h)E$ $J = eD_n \nabla n + eD_p \nabla D_n/\mu_n = kT/e$ $= r n_i^2 at equilibriant dt_{diffn} + dn/dt_{thermal}$	p μ _h) ⁷ p ium			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation: R and G $R = G = rnp =$ dn/dt dn/dt dn/dt dn/dt dn/dt $dn/dt_{drift} = 1/e \nabla J_{diffn}$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + D_p)V$ $D_n/\mu_n = kT/e$ $= r n_i^2 at equilibrities at equilibr$	p μ _h) ⁷ p ium			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation: R and G $R = G = rnp =$ $dn/dt = dn/dt_{drift} + c$ Fick's law $dn/dt_{diffn} = 1/e \nabla J_{diffn}$ so $dn/dt = (1/e) \nabla \{J_{drift}\}$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + D_p V)$ $D_n/\mu_n = kT/e$ $= r n_i^2 at \text{ equilibria}$ $\ln/dt_{diffn} + dn/dt_{thermal}$ $= D_n d^2 n/dx^2$ $ft + J_{diffn} \} + G - R$	$p \mu_h$) 7p ium _{RG} + dn/dt _{other RG}			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation:R and GR = G = rnp =dn/dt = dn/dt_{drift} + drFick's lawdn/dt_{diffn} = 1/e ∇J_{diffn} sodn/dt = (1/e) $\nabla \{J_{drift} = dn/dt_{thermal} = -n_l/\tau_n$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + D_p)V$ $D_n/\mu_n = kT/e$ $= r n_i^2 at equilibrit$ $dn/dt_{diffn} + dn/dt_{thermal}$ $= D_n d^2 n/dx^2$ $dn + J_{diffn} + G - R$ or $dp/dt_{thermal} = -p$	$p \mu_h$) $p_7 p_7$ $p_{RG} + dn/dt_{other RG}$ p_l/τ_p			
Current density (electrons)Current density (electrons & holes)ConductivityDiffusionEinstein relation: R and G $R = G = rnp =$ $dn/dt = dn/dt_{drift} + c$ Fick's law $dn/dt_{diffn} = 1/e \nabla J_{diffn}$ so $dn/dt = (1/e) \nabla \{J_{drift}\}$	$J = n e v_d$ $J = e (n \mu_n + p \mu_h)E$ $\sigma = J/E = e (n \mu_n + D_p V)$ $D_n/\mu_n = kT/e$ $= r n_i^2 at \text{ equilibria}$ $dn/dt_{diffn} + dn/dt_{thermal}$ $= D_n d^2 n/dx^2$ $ft + J_{diffn} \} + G - R$ or $dp/dt_{thermal} = - p$ $L_n = \sqrt{\tau_n}D_n,$	$p \mu_h$) 7p ium _{RG} + dn/dt _{other RG}			

pn junction

$$\begin{split} \mathbf{E} &= 1/\epsilon_{o}\epsilon_{r}\int\rho(x)\ dx \qquad \text{where }\rho = e(p-n+N_{D}-N_{A})\\ \mathbf{E} &= -dV/dx\\ eV_{o} &= (E_{f}-E_{i})_{n-type} - (E_{f}-E_{i})_{p-type}\\ &= kT/e\ ln\ (n_{n}/n_{p})\ or\ kT/e\ ln\ (N_{A}N_{D}/n_{i}^{\ 2})\\ \mathbf{E} &= N_{A}e\ d_{p}/\epsilon_{o}\epsilon_{r} = N_{D}e\ d_{p}/\epsilon_{o}\epsilon_{r} \qquad at\ x = 0\\ V_{o} &= (e\ /2\epsilon_{o}\epsilon_{r})\ (N_{D}d_{n}^{\ 2} + N_{A}d_{p}^{\ 2})\\ d_{n} &= \sqrt{\{(2\epsilon_{o}\epsilon_{r}V_{o}/e)\ (N_{A}/(N_{D}(N_{D}+N_{A})))\}}\\ d &= d_{p} + d_{n} = \sqrt{\{(2\epsilon_{o}\epsilon_{r}(V_{o}+V_{A})/e)\ (N_{D}+N_{A})/\ N_{A}N_{D}\}}\\ J &= J_{o}\{exp\ eV_{A}/kT - 1\}\ where\ J_{o} &= en_{i}^{\ 2}\ \{D_{p}/N_{D}L_{p} + D_{n}/N_{A}L_{n}\}\\ \hline \frac{Transistor}{I_{E}} &= (eD_{p}/w)\ (n_{i}^{\ 2}/N_{D,B})\ exp(eV_{EB}/kT)\\ JFET &V_{SD,\ sat} &= (eN_{D}t^{2}/8\epsilon_{o}\epsilon_{r}) - (V_{o}+V_{G}) \end{split}$$

Photodiode and photovoltaic

$$\begin{split} I &= I_o + I_G & V = I \left(R_{PV} + R_L \right) \\ I &= I_o \{ exp \ eV/kT - 1 \} + I_G & Power = IV \end{split}$$

Wavelength $\lambda(\mu m) = 1.24/E_g (eV)$

Band structure

Effective mass: $m^* = \hbar^2 (\partial^2 E / \partial k^2)^{-1}$ Momentum of an electron typically $\pi/a \sim 10^{10} \text{ m}^{-1}$ Momentum of a photon $= 2\pi/\lambda \sim 10^7 \text{ m}^{-1}$ Uncertainly principle $\Delta x \Delta p \ge \hbar$

Lasers

 $\begin{array}{ll} \mbox{probability of absorption} = B_{13}, \mbox{stimulated emission} = B_{31}, \mbox{spontaneous emission} = A_{31} \\ N_3 = N_1 \mbox{ exp (-hv_{31}/kT)} \\ \mbox{Planck } \rho(\nu) d\nu = \{8\pi h \nu^3/c^3 \}/\{\mbox{exp (hv/kT) - 1} \} \ d\nu \\ B_{13} = B_{31} \\ \mbox{and} \quad A_{31}/B_{31} = 8\pi h \nu^3/c^3 \qquad (\mbox{Einstein relations}) \\ \mbox{Cavity modes} \qquad \nu = cN/2d, \ N \ an \ integer. \end{array}$

Fibers

Attenuation (dB) = {10/L} log(P_{in}/P_{out}) L = fiber length Snell's law: $n \sin \phi = n' \sin \phi'$ Dispersion coefft. $D_{\lambda} = -\{\lambda_o/c\}(\partial^2 n/\partial \lambda^2)_{\lambda = \lambda_o}$ ps/km.nm $\sigma_t = \sigma_{\lambda} L D_{\lambda}$

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Avogadro constant	$N_A = 6.022 \times 10^{23}$ particles/mole			
Boltzmann constant	$k = 8.617 \text{ x } 10^{-5} \text{ eV/K} = 1.38 \text{ x } 10^{-23} \text{ J/K}$			
Elementary charge	$e = 1.602 \text{ x } 10^{-19} \text{ coulomb}$			
Planck constant	$h = 4.136 \ge 10^{-15} \text{ eV} \cdot \text{s}$			
	$= 6.626 \text{ x } 10^{-34} \text{ joule } \cdot \text{s}$			
Speed of light	$c = 2.998 \text{ x } 10^{10} \text{ cm/s}$			
Permittivity (free space)	$\varepsilon_0 = 8.85 \text{ x } 10^{-14} \text{ farad/cm}$			
Electron mass	$m = 9.1095 \text{ x } 10^{-31} \text{ kg}$			
Coulomb constant	$k_{\rm c} = 8.988 \text{ x } 10^9 \text{ newton-m}^2/(\text{coulomb})^2$			
Atomic mass unit	$u = 1.6606 \text{ x } 10^{-27} \text{ kg}$			
Useful Combinations				
Thermal energy (300 K)	$kT = 0.0258 \text{ eV} \approx 1 \text{ eV}/40$			
Photon energy	$E = 1.24 \text{ eV}$ at $\lambda = \mu \text{m}$			
Coulomb constant	$k_{\rm c} {\rm e}^2$ 1.44 eV · nm			
Permittivity (Si)	$\varepsilon = \varepsilon_r \varepsilon_0 = 1.05 \text{ x } 10^{-12} \text{ farad/cm}$			
Permittivity (free space)	$\varepsilon_0 = 55.3 \text{e/V} \cdot \mu \text{m}$			
Prefixes				
$k = kilo = 10^3$; $M = mega = 10^6$; $G = giga = 10^9$; $T = tera = 10^{12}$				
m = milli = 10^{-3} ; μ = micro = 10^{-6} ; n = nano = 10^{-9} ; p = pica = 10^{-12}				
Symbols for Units				
Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K)				
Meter (m), Newton (N), Ohm (Ω), Second (s), Siemen (S), Tesla (T)				

Volt (V), Watt (W), Weber (Wb)

Conversions

 $1 \text{ nm} = 10^{-9} \text{ m} = 10 \text{ Å} = 10^{-7} \text{ cm}; 1 \text{ eV} = 1.602 \text{ x} 10^{-9} \text{ Joule} = 1.602 \text{ x} 10^{-12} \text{ erg};$ 1 eV/particle = 23.06 kcal/mol; 1 newton = 0.102 kg_{force}; $10^6 \text{ newton/m}^2 = 146 \text{ psi} = 10^7 \text{ dyn/cm}^2$; $1 \ \mu\text{m} = 10^{-4} \text{ cm}$ 0.001 inch = $1 \ \text{mil} = 25.4 \ \mu\text{m}$; 1 bar = 10^{6} dyn/cm² = 10^{5} N/m²; 1 weber/m² = 10^{4} gauss = 1 tesla; 1 pascal = 1 N/m^2 = 7.5 x 10⁻³ torr; 1 erg = 10^{-7} joule = 1 dyn-cm