Problem 1

$$
\tau=10^{5} \mathrm{~s}, D=40 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

a.

Concentration at $x=0: 10^{10} / \mathrm{cm}^{2} \mathrm{~s} \times \frac{1}{10^{4}} / \mathrm{cm} \times 10^{5} \mathrm{~s}=10^{9} / \mathrm{cm}^{3}$ of photogenerated carriers.

Therefore:

$$
\begin{aligned}
& p=10^{18}+10^{49} \approx 10^{18} \mathrm{~cm}^{-3} \text { at surface } \\
& n=10^{2}+10^{49} \approx 10^{90} \mathrm{~cm}^{-3} \text { at surface }
\end{aligned}
$$

$$
L=\sqrt{D t}=\sqrt{40 \times 10^{-5}}=2 \sqrt{10^{-4}} \mathrm{~cm} \text { or } 0.02 \mathrm{~cm}=200 \mu \mathrm{~m}
$$

b.

$$
\begin{aligned}
& \frac{d n}{d t}=\frac{d n}{d t}_{d r i f t}+\frac{d n}{d t}_{d i f f}+\frac{d n}{d t}_{\text {thermal } R G}+\frac{d n}{d t}_{\text {other } R G}=0 \text { at steady state } \\
& \frac{d n}{d t}_{d r i f t}=0 \text { no } \epsilon, \frac{d n}{d t}_{\text {other } R G}=0 \text { except near surface } \\
& 0=\frac{d n}{d t}_{\text {diff }}+\frac{d n}{d t}{ }_{\text {thermal }} \\
& =\frac{d^{2} n}{d x^{2}} D+\frac{-\left(n-n_{p}\right)}{\tau} \\
& \frac{-\left(n-n_{p}\right)}{\tau}=\text { excess carrier concentration } \\
& \Rightarrow \frac{d^{2} n}{d x^{2}}=\frac{\left(n-n_{p}\right)}{D \tau} \text { gives the variation in } n(x)
\end{aligned}
$$

This has a solution:

$$
\left(n-n_{p}\right)=n(x=0) \exp \left(\frac{-x}{\sqrt{D t}}\right)=10^{9} \exp \left(\frac{-x}{\sqrt{D t}}\right)
$$

c.

The Si is thinner than L , so the concentration of electrons does not drop off very much as we go into the Si . It has dropped to $\exp \left(-\frac{1}{2}\right)=0.6$ of its initial value so on average the electron concentration is somewhere between 0.6×10^{9} and $1.11 / \mathrm{cm}^{3}$.

Initially: $n=10^{2}, p=10^{18}$.
With light: $n \approx 0.8 \times 10^{9}, p=10^{18}$.

$$
\begin{gathered}
0=e\left(n \mu_{n}+p \mu_{p}\right) \propto(n+p) \text { if } \mu \text { are the same. } \\
\text { Ratio is }\left(\frac{-10^{9}+10^{18}}{10^{2}+10^{18}}\right) \approx 1
\end{gathered}
$$

The change is insignificant.

Problem 2
a.

The EB jn is fwd biased \Rightarrow large diffusion currents flow.
Diffusion current of holes from $E \rightarrow B$
Diffusion current of electrons from $B \rightarrow E$
Magnitude of $\frac{\text { hole current }}{\text { e current }}=\frac{N_{A E}}{N_{D B}} \gg 1$ by design.

$$
\text { Current Gain } \beta=\frac{I_{E C}}{I_{E B}}
$$

$I_{E B}$ has 3 components: the diffusion current of electrons across BE , the drift of electrons from CB and a recombination current. In practice, the first term is largest.

$$
\Rightarrow \frac{I_{E C}}{I_{E B}}=\frac{N_{A E}}{N_{D B}} \text { usually } \approx 100 \text { or so. }
$$

b.

Saturated \Rightarrow both jns in fwd bias.

Large currents flow from E to B and from C to B. The current exits at B.

Problem 3

InSb
$E_{g}=0.2$
$\mu_{n}=80000 \mathrm{~cm}^{2} / \mathrm{Vs}, m_{n}^{*}=0.001 m_{o}, N_{C}=10^{18} \mathrm{~cm}^{-3}$
$\mu_{p}=750 \mathrm{~cm}^{2} / \mathrm{Vs}, m_{n}^{*}=0.1 m_{o}, N_{C}=10^{19} \mathrm{~cm}^{-3}$
a.

$$
\begin{aligned}
n_{i}^{2}= & N_{C} N_{V} \exp \left(-E_{g} / k T\right) \\
= & 10^{18} 10^{19} \exp \left(-\frac{0.2}{0.0258}\right) \\
= & 4.3 \cdot 10^{33} \\
& n_{i}=6.5 \cdot 10^{16} \mathrm{~cm}^{-3}
\end{aligned}
$$

$$
\sigma=\left(n \mu_{n}+p \mu_{p}\right) e=1.6 \cdot 10^{-19} \times\left(10^{18} \times 80000+4.3 \cdot 10^{15} \times 750\right)=1.3 \cdot 10^{4} \Omega^{-1} \mathrm{~cm}^{-1}
$$

Here $p=n_{i} 2 / N_{o}=4.3 \cdot 10^{33} / 10^{18}=4.3 \cdot 10^{15} \mathrm{~cm}^{-} 3$.
b.

[3] for relahue $g(E)$ slopes
[4] for Ef position
[3] forecuprancy.
g_{c} vaires more rapidly than g_{v} because m_{n}^{*} is smaller.

$$
g_{c}\left(E_{\propto}\left(m_{n}^{*}\right)^{\frac{3}{2}} \sqrt{E}\right.
$$

$$
\begin{aligned}
E_{i} & =(\text { midpoint })+\frac{3}{4} k T \ln \left(\frac{m_{p}^{*}}{m_{n}^{*}}\right) \\
& =(\text { midpoint })+\frac{3}{4} \times 0.0258 \ln 100 \\
& =0.09 \mathrm{eV}
\end{aligned}
$$

It is at $0.1+0.09=0.19 \mathrm{eV}$ above $E_{v}\left(\right.$ near $\left.E_{c}\right)$.
c.

Electron currents and hole currents only in the depletion region. No net current.

Note: if the 5 is more

