3.15 Electrical, Optical, and Magnetic Materials and Devices Caroline A. Ross Fall Term, 2006

Exam 1 (3 pages) Closed book exam. Formulae and data are on the last 2 pages of the exam. This takes 80 min and there are 80 points total. **Be brief** in your answers and **use sketches**.

Assume everything is at 300K unless otherwise noted.

1. A thick slab of Si (p-type, $N_A = 10^{18} \text{ cm}^{-3}$), is illuminated on one side with light. The light creates an extra 10^{10} electron-hole pairs cm⁻² s⁻¹ in the top 1 µm of the Si. The lifetime of the carriers is 10^{-5} s, and their diffusivity can be taken as 40 cm² s⁻¹ (neglect the difference between electrons and holes).

a) Draw a plot of *both* p and n vs. distance x into the Si, as accurately as you can. You should calculate the concentrations at the surface. [10]

b) For the electrons, derive a steady-state expression that shows how their concentration varies with distance into the Si, explaining your reasoning. [10]

c) Suppose the Si is only 100 μ m thick. Is there a significant change in conductivity due to the light? Justify your answer with a calculation or estimate. [10]

2. a) For a BJT in *forward active mode*, explain concisely what factor(s) determine the current gain β , and why. (3-4 sentences) [10]

b) The BJT is now biased so that it is in the *saturated mode*. Draw a band structure of the biased BJT (assume it is pnp) and explain what is going on at each junction and where the current flows in the device. (3-4 sentences) [10]

3. InSb is a semiconductor with a band gap of 0.2 eV and mobilities of 80,000 cm² V⁻¹ s⁻¹ for electrons and 750 cm² V⁻¹ s⁻¹ for holes. The effective masses are $0.001m_o$ for electrons and $0.1m_o$ for holes. N_c = 10^{18} cm⁻³ and N_v = 10^{19} cm⁻³.

a) What intrinsic carrier concentration would you expect in *undoped* InSb? For *doped* InSb (with $N_D = 10^{18} \text{ cm}^{-3}$) what conductivity would you expect? [10]

b) Draw a plot of density of states vs energy (with the energy axis vertical), indicating quantitatively where the Fermi energy is. Show schematically the occupation of the intrinsic electrons and holes on this plot. [10]

c) You now make a pn junction between n-type InSb and p-type Si. Draw a sketch of what the band structure might look like at equilibrium and show where there are diffusion and drift currents. [10]

Properties	Si	GaAs	SiO ₂	Ge
Atoms/cm ³ , molecules/cm ³ x 10 ²²	5.0	4.42	2.27 ^a	
Structure	diamond	zincblende	amorphous	
Lattice constant (nm)	0.543	0.565		
Density (g/cm ³)	2.33	5.32	2.27 ^a	
Relative dielectric constant, ε_r	11.9	13.1	3.9	
Permittivity, $\varepsilon = \varepsilon_r \varepsilon_o \text{ (farad/cm)} \times 10^{-12}$	1.05	1.16	0.34	
Expansion coefficient (dL/LdT) x (10-6 K)	2.6	6.86	0.5	
Specific Heat (joule/g K)	0.7	0.35	1.0	
Thermal conductivity (watt/cm K)	1.48	0.46	0.014	
Thermal diffusivity (cm ² /sec)	0.9	0.44	0.006	
Energy Gap (eV)	1.12	1.424	~9	0.67
Drift mobility (cm ² /volt-sec)				
Electrons	1500	8500		
Holes	450	400		
Effective density of states				
$(cm^{-3}) \times 10^{19}$				
Conduction band	2.8	0.047		
Valence band	1.04	0.7		
Intrinsic carrier concentration (cm ⁻³)	1.45 x 10 ¹⁰	1.79 x 10 ⁶		

Properties of Si, GaAs, SiO₂, and Ge at 300 K $\,$

Figure by MIT OCW.

PHYSICAL CONSTANTS, CO	ONVERSIONS, AND USEFUL COMBINATIONS
Physical Constants	
Avogadro constant	$N_A = 6.022 \text{ x } 10^{23} \text{ particles/mole}$
Boltzmann constant	$k = 8.617 \text{ x } 10^{-5} \text{ eV/K} = 1.38 \text{ x } 10^{-23} \text{ J/K}$
Elementary charge	$e = 1.602 \text{ x } 10^{-19} \text{ coulomb}$
Planck constant	$h = 4.136 \text{ x } 10^{-15} \text{ eV} \cdot \text{s}$
	$= 6.626 \times 10^{-34}$ joule ·s
Speed of light	$c = 2.998 \times 10^{10} \text{ cm/s}$
Permittivity (free space)	$\varepsilon_0 = 8.85 \text{ x } 10^{-14} \text{ farad/cm}$
Electron mass	$m = 9.1095 \text{ x } 10^{-31} \text{ kg}$
Coulomb constant	$k_{\rm c} = 8.988 \text{ x } 10^9 \text{ newton-m}^2/(\text{coulomb})^2$
Atomic mass unit	$u = 1.6606 \text{ x } 10^{-27} \text{ kg}$
Useful Combinations	w 1.0000 h 10 hg
Thermal energy (300 K)	$kT = 0.0258 \text{ eV} \approx 1 \text{ eV}/40$
Photon energy	$E = 1.24 \text{ eV}$ at $\lambda = \mu \text{m}$
Coulomb constant	$k_{\rm c} {\rm e}^2$ 1.44 eV · nm
Permittivity (Si)	$\varepsilon = \varepsilon_r \varepsilon_0 = 1.05 \text{ x } 10^{-12} \text{ farad/cm}$
Permittivity (free space)	$\varepsilon_0 = 55.3 e/V \cdot \mu m$
Prefixes	
$k = kilo = 10^3; M = mega = 1$	10^6 ; G = giga = 10^9 ; T = tera = 10^{12}
$m = milli = 10^{-3}; \mu = micro =$	= 10^{-6} ; n = nano = 10^{-9} ; p = pica = 10^{-12}
Symbols for Units	
Ampere (A), Coulomb (C), F	Parad (F), Gram (g), Joule (J), Kelvin (K)
Meter (m), Newton (N), Ohn	n (Ω), Second (s), Siemen (S), Tesla (T)
Volt (V), Watt (W), Weber (W	Wb)
Conversions	,
1 nm = 10 ⁻⁹ m = 10 Å = 10 ⁻⁷ 1 eV/particle = 23.06 kcal/m 10 ⁶ newton/m ² = 146 psi = 1 1 bar = 10 ⁶ dyn/cm ² = 10 ⁵ N 1 pascal = 1 N/m ² = 7.5 x 10	cm; 1 eV = 1.602×10^{-9} Joule = 1.602×10^{-12} erg; b]; 1 newton = $0.102 \text{ kg}_{\text{force}}$; 0^7 dyn/cm^2 ; 1 μ m = 10^{-4} cm 0.001 inch = 1 mil = 2: /m ² ; 1 weber/m ² = 10^4 gauss = 1 tesla; - ³ torr; 1 erg = 10^{-7} joule = 1 dyn-cm

Useful equations

 $\begin{array}{l} \underline{pn \ junction} \\ \mathbf{E} = 1/\epsilon_{o}\epsilon_{r} \int \rho(x) \ dx \quad where \ \rho = e(p-n+N_{D}-N_{A}) \\ \mathbf{E} = -dV/dx \\ eV_{o} = (E_{f} - E_{i})_{n-type} - (E_{f} - E_{i})_{p-type} \\ = kT/e \ ln \ (n_{n}/n_{p}) \ or \ kT/e \ ln \ (N_{A}N_{D}/n_{i}^{2}) \\ \mathbf{E} = N_{A}e \ d_{p}/\epsilon_{o}\epsilon_{r} = N_{D}e \ d_{p}/\epsilon_{o}\epsilon_{r} \quad at \ x = 0 \\ V_{o} = (e/2\epsilon_{o}\epsilon_{r}) \ (N_{D}d_{n}^{2} + N_{A}d_{p}^{2}) \\ d_{n} = \sqrt{\{(2\epsilon_{o}\epsilon_{r}V_{o}/e) \ (N_{A}/(N_{D}(N_{D} + N_{A}))\} \\ d = d_{p} + d_{n} = \sqrt{\{(2\epsilon_{o}\epsilon_{r}(V_{o} + V_{A})/e) \ (N_{D} + N_{A})/N_{A}N_{D}\} \\ J = J_{o}\{exp \ eV_{A}/kT - 1\} \ where \ J_{o} = en_{i}^{2} \ \{D_{p}/N_{D}L_{p} + D_{n}/N_{A}L_{n}\} \\ Transistor \quad BJT \ gain \ \beta = I_{C}/I_{B} \sim I_{E}/I_{B} \\ I_{E} = (eD_{p}/w) \ (n_{i}^{2}/N_{D,B}) \ exp(eV_{EB}/kT) \end{array}$