3.15 Electrical, Optical, and Magnetic Materials and Devices Caroline A. Ross

Fall Term, 2006

Exam 1 (3 pages)

Closed book exam. Formulae and data are on the last 2 pages of the exam. This takes 80 min and there are 80 points total. Be brief in your answers and use sketches.

Assume everything is at 300 K unless otherwise noted.

1. A thick slab of Si (p -type, $\mathrm{N}_{\mathrm{A}}=10^{18} \mathrm{~cm}^{-3}$), is illuminated on one side with light. The light creates an extra 10^{10} electron-hole pairs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ in the top $1 \mu \mathrm{~m}$ of the Si. The lifetime of the carriers is $10^{-5} \mathrm{~s}$, and their diffusivity can be taken as $40 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ (neglect the difference between electrons and holes).
a) Draw a plot of both p and n vs. distance x into the Si , as accurately as you can. You should calculate the concentrations at the surface. [10]
b) For the electrons, derive a steady-state expression that shows how their concentration varies with distance into the Si , explaining your reasoning. [10]
c) Suppose the Si is only $100 \mu \mathrm{~m}$ thick. Is there a significant change in conductivity due to the light? Justify your answer with a calculation or estimate. [10]
2. a) For a BJT in forward active mode, explain concisely what factor(s) determine the current gain β, and why. (3-4 sentences) [10]
b) The BJT is now biased so that it is in the saturated mode. Draw a band structure of the biased BJT (assume it is pnp) and explain what is going on at each junction and where the current flows in the device. (3-4 sentences) [10]
3. InSb is a semiconductor with a band gap of 0.2 eV and mobilities of $80,000 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for electrons and $750 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for holes. The effective masses are $0.001 \mathrm{~m}_{0}$ for electrons and $0.1 \mathrm{~m}_{0}$ for holes. $\mathrm{N}_{\mathrm{c}}=10^{18} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{v}}=10^{19} \mathrm{~cm}^{-3}$.
a) What intrinsic carrier concentration would you expect in undoped InSb ? For doped InSb (with $\mathrm{N}_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3}$) what conductivity would you expect? [10]
b) Draw a plot of density of states vs energy (with the energy axis vertical), indicating quantitatively where the Fermi energy is. Show schematically the occupation of the intrinsic electrons and holes on this plot. [10]
c) You now make a pn junction between n-type InSb and p-type Si. Draw a sketch of what the band structure might look like at equilibrium and show where there are diffusion and drift currents. [10]

Properties	Si	GaAs	SiO_{2}	Ge
Atoms $/ \mathrm{cm}^{3}$, molecules $/ \mathrm{cm}^{3} \times 10^{22}$ Structure Lattice constant (nm) Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ Relative dielectric constant, ε_{r} Permittivity, $\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{\mathrm{o}}($ farad $/ \mathrm{cm}) \times 10^{-12}$ Expansion coefficient ($\mathrm{dL} / \mathrm{LdT}$) $\times\left(10^{-6} \mathrm{~K}\right)$ Specific Heat (joule/g K) Thermal conductivity (watt/cm K) Thermal diffusivity ($\mathrm{cm}^{2} / \mathrm{sec}$) Energy Gap (eV) Drift mobility ($\mathrm{cm}^{2} /$ volt-sec) Electrons Holes Effective density of states $\left(\mathrm{cm}^{-3}\right) \times 10^{19}$ Conduction band Valence band Intrinsic carrier concentration $\left(\mathrm{cm}^{-3}\right)$	5.0 diamond 0.543 2.33 11.9 1.05 2.6 0.7 1.48 0.9 1.12 1500 450 2.8 1.04 1.45×10^{10}	4.42 zincblende 0.565 5.32 13.1 1.16 6.86 0.35 0.46 0.44 1.424 8500 400 0.047 0.7 1.79×10^{6}	2.27^{a} amorphous 2.27^{a} 3.9 0.34 0.5 1.0 0.014 0.006 ~9	0.67

Properties of $\mathrm{Si}, \mathrm{GaAs}, \mathrm{SiO}_{2}$, and Ge at 300 K

Figure by MIT OCW.

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Avogadro constant	$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$ particles/mole
Boltzmann constant	$k=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Elementary charge	$e=1.602 \times 10^{-19} \mathrm{coulomb}$
Planck constant	$h=4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
	$=6.626 \times 10^{-34} \mathrm{joule} \cdot \mathrm{s}$
Speed of light	$c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
Permittivity (free space)	$\varepsilon_{0}=8.85 \times 10^{-14} \mathrm{farad} / \mathrm{cm}$
Electron mass	$m=9.1095 \times 10^{-31} \mathrm{~kg}$
Coulomb constant	$k_{\mathrm{c}}=8.988 \times 10^{9} \mathrm{newton}-\mathrm{m}^{2} /(\text { coulomb })^{2}$
Atomic mass unit	$u=1.6606 \times 10^{-27} \mathrm{~kg}$
Useful Combinations	$k T=0.0258 \mathrm{eV} \simeq 1 \mathrm{eV} / 40$
Thermal energy (300 K)	$E=1.24 \mathrm{eV}$ at $\lambda=\mu \mathrm{m}$
Photon energy	$k_{\mathrm{c}} \mathrm{e}^{2} 1.44 \mathrm{eV} \cdot \mathrm{nm}$
Coulomb constant	$\varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}=1.05 \times 10^{-12} \mathrm{farad} / \mathrm{cm}$
Permittivity (Si)	$\varepsilon_{0}=55.3 \mathrm{e} / \mathrm{V} \cdot \mu \mathrm{m}$
Permittivity (free space)	

Prefixes

$\mathrm{k}=$ kilo $=10^{3} ; \mathrm{M}=$ mega $=10^{6} ; \mathrm{G}=$ giga $=10^{9} ; \mathrm{T}=$ tera $=10^{12}$
$\mathrm{m}=$ milli $=10^{-3} ; \mu=$ micro $=10^{-6} ; \mathrm{n}=$ nano $=10^{-9} ; \mathrm{p}=$ pica $=10^{-12}$

Symbols for Units

Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K)
Meter (m), Newton (N), Ohm (Ω), Second (s , Siemen (S), Tesla (T)
Volt (V), Watt (W), Weber (Wb)

Conversions

$1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \AA=10^{-7} \mathrm{~cm} ; 1 \mathrm{eV}=1.602 \times 10^{-9}$ Joule $=1.602 \times 10^{-12} \mathrm{erg} ;$
$1 \mathrm{eV} /$ particle $=23.06 \mathrm{kcal} / \mathrm{mol} ; 1$ newton $=0.102 \mathrm{~kg}_{\text {force }}$;
10^{6} newton $/ \mathrm{m}^{2}=146 \mathrm{psi}=10^{7} \mathrm{dyn} / \mathrm{cm}^{2} ; 1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm} 0.001$ inch $=1 \mathrm{mil}=25.4 \mu \mathrm{~m}$;
$1 \mathrm{bar}=10^{6} \mathrm{dyn} / \mathrm{cm}^{2}=10^{5} \mathrm{~N} / \mathrm{m}^{2} ; 1$ weber $/ \mathrm{m}^{2}=10^{4}$ gauss = 1 tesla;
1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2}=7.5 \times 10^{-3}$ torr, $1 \mathrm{erg}=10^{-7}$ joule $=1$ dyn -cm

Useful equations

$\mathrm{g}_{\mathrm{c}}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{n}} * \sqrt{ }\left\{2 \mathrm{~m}_{\mathrm{n}} *\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right\} /\left(\pi^{2} \underline{\underline{h}}^{3}\right) \quad(\underline{\mathrm{h}}=\mathrm{h}$-bar $)$
$\mathrm{g}_{\mathrm{v}}(\mathrm{E}) \mathrm{dE}=\mathrm{m}_{\mathrm{p}} * \sqrt{ }\left\{2 \mathrm{~m}_{\mathrm{p}} *\left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}\right)\right\} /\left(\pi^{2} \underline{h}^{3}\right)$
$\mathrm{f}(\mathrm{E})=1 /\left\{1+\exp \left(\mathrm{E}-\mathrm{E}_{\mathrm{f}}\right) / \mathrm{kT}\right\}$
$\mathrm{n}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}, \quad \mathrm{p}=\mathrm{n}_{\mathrm{i}} \exp \left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}\right) / \mathrm{kT}$
$n_{i}=N_{c} \exp \left(E_{i}-E_{c}\right) / k T \quad$ where $N_{c}=2\left\{2 \pi m_{n} * k T / h^{2}\right\}^{3 / 2}$
or
$\mathrm{n}_{\mathrm{i}}=\mathrm{N}_{\mathrm{v}} \exp \left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}_{\mathrm{i}}\right) / \mathrm{kT}$ where $\mathrm{N}_{\mathrm{v}}=2\left\{2 \pi \mathrm{~m}_{\mathrm{p}} * \mathrm{kT} / \mathrm{h}^{2}\right\}^{3 / 2}$
$n p=n_{i}^{2}$ at equilibrium
$\mathrm{n}_{\mathrm{i}}^{2}=\mathrm{N}_{\mathrm{c}} \mathrm{N}_{\mathrm{v}} \exp \left(\mathrm{E}_{\mathrm{v}}-\mathrm{E}_{\mathrm{c}}\right) / \mathrm{kT}=\mathrm{N}_{\mathrm{c}} \mathrm{N}_{\mathrm{v}} \exp \left(-\mathrm{E}_{\mathrm{g}}\right) / \mathrm{kT}$
$\mathrm{E}_{\mathrm{i}}=\left(\mathrm{E}_{\mathrm{v}}+\mathrm{E}_{\mathrm{c}}\right) / 2+3 / 4 \mathrm{kT} \ln \left(\mathrm{m}_{\mathrm{p}}{ }^{*} / \mathrm{m}_{\mathrm{n}}{ }^{*}\right)$

$$
\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{kT} \ln \left(\mathrm{n} / \mathrm{n}_{\mathrm{i}}\right)=-\mathrm{kT} \ln \left(\mathrm{p} / \mathrm{n}_{\mathrm{i}}\right)
$$

$\sim \mathrm{kT} \ln \left(\mathrm{N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}\right)$ ntype or $-\mathrm{kT} \ln \left(\mathrm{N}_{\mathrm{A}} / \mathrm{n}_{\mathrm{i}}\right)$ ptype
Drift: thermal velocity

$$
1 / 2 \mathrm{mv}_{\text {thermal }}^{2}=3 / 2 \mathrm{kT}
$$

drift velocity
Current density (electrons)

$$
\mathrm{v}_{\mathrm{d}}=\mu \mathbf{E} \quad \mathbf{E}=\text { field }
$$

$$
\mathrm{J}=\mathrm{n} \mathrm{e} \mathrm{v}_{\mathrm{d}}
$$

Current density (electrons \& holes)

$$
\mathrm{J}=\mathrm{e}\left(\mathrm{n} \mu_{\mathrm{n}}+\mathrm{p} \mu_{\mathrm{h}}\right) \mathbf{E}
$$ $\mathrm{J}=\mathrm{e}\left(\mathrm{n} \mu_{\mathrm{n}}+\mathrm{p} \mu_{\mathrm{h}}\right) \mathbf{E}$

Conductivity $\sigma=\mathrm{J} / \mathbf{E}=\mathrm{e}\left(\mathrm{n} \mu_{\mathrm{n}}+\mathrm{p} \mu_{\mathrm{h}}\right)$
Diffusion

$$
\mathrm{J}=\mathrm{eD}_{\mathrm{n}} \nabla \mathrm{n}+\mathrm{eD}_{\mathrm{p}} \nabla \mathrm{p}
$$

Einstein relation: $\mathrm{D}_{\mathrm{n}} / \mu_{\mathrm{n}}=\mathrm{kT} / \mathrm{e}$
$\underline{\mathrm{R} \text { and } \mathrm{G}} \quad \mathrm{R}=\mathrm{G}=\mathrm{rnp}=\mathrm{r}_{\mathrm{i}}{ }^{2}$ at equilibrium

$$
\mathrm{dn} / \mathrm{dt}=\mathrm{dn} / \mathrm{dt}_{\mathrm{drift}}+\mathrm{dn} / \mathrm{dt}_{\mathrm{diffn}}+\mathrm{dn} / \mathrm{dt}_{\text {thermal RG }}+\mathrm{dn}^{2} / \mathrm{dt}_{\text {other RG }}
$$

Fick's law $\quad d n / d_{\text {diffn }}=1 / e \nabla J_{\text {diffn }}=D_{n} d^{2} n / d x^{2}$
so $\quad \mathrm{dn} / \mathrm{dt}=(1 / \mathrm{e}) \nabla\left\{\mathrm{J}_{\text {drift }}+\mathrm{J}_{\text {diffn }}\right\}+\mathrm{G}-\mathrm{R}$ $\mathrm{dn} / \mathrm{dt}_{\text {thermal }}=-\mathrm{n}_{1} / \tau_{\mathrm{n}} \quad$ or $\quad \mathrm{dp} / \mathrm{dt}_{\text {thermal }}=-\mathrm{p}_{\mathrm{l}} / \tau_{\mathrm{p}}$
$\tau_{\mathrm{n}}=1 / \mathrm{rN} \mathrm{N}_{\mathrm{A}}$, or $\tau_{\mathrm{p}}=1 / \mathrm{rN} \mathrm{N}_{\mathrm{D}} \quad \mathrm{L}_{\mathrm{n}}=\sqrt{\tau_{n} D_{\mathrm{n}}}$, or $\mathrm{L}_{\mathrm{p}}=\sqrt{ } \tau_{\mathrm{p}} \mathrm{D}_{\mathrm{p}}$.
If traps dominate $\tau=1 / \mathrm{r}_{2} \mathrm{~N}_{\mathrm{T}}$ where $\mathrm{r}_{2} \gg \mathrm{r}$
pn junction

Transistor BJT gain $\beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}} \sim \mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}$

$$
\mathrm{I}_{\mathrm{E}}=\left(\mathrm{e} \mathrm{D}_{\mathrm{p}} / \mathrm{w}\right)\left(\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{D}, \mathrm{~B}}\right) \exp \left(\mathrm{e} \mathrm{~V}_{\mathrm{EB}} / \mathrm{kT}\right)
$$

$$
\begin{aligned}
& \mathbf{E}=1 / \varepsilon_{0} \varepsilon_{\mathrm{r}} \int \rho(\mathrm{x}) \mathrm{dx} \quad \text { where } \rho=\mathrm{e}\left(\mathrm{p}-\mathrm{n}+\mathrm{N}_{\mathrm{D}}-\mathrm{N}_{\mathrm{A}}\right) \\
& \mathbf{E}=-\mathrm{dV} / \mathrm{dx} \\
& e V_{o}=\left(E_{f}-E_{i}\right)_{n-\text { type }}-\left(E_{f}-E_{i}\right)_{p-t y p e} \\
& =\mathrm{kT} / \mathrm{e} \ln \left(\mathrm{n}_{\mathrm{n}} / \mathrm{n}_{\mathrm{p}}\right) \text { or } \mathrm{kT} / \mathrm{e} \ln \left(\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}} / \mathrm{n}_{\mathrm{i}}{ }^{2}\right) \\
& \mathbf{E}=\mathrm{N}_{\mathrm{A}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{0} \varepsilon_{\mathrm{r}}=\mathrm{N}_{\mathrm{D}} \mathrm{e} \mathrm{~d}_{\mathrm{p}} / \varepsilon_{0} \varepsilon_{\mathrm{r}} \quad \text { at } \mathrm{x}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\left(\mathrm{e} / 2 \varepsilon_{0} \varepsilon_{\mathrm{r}}\right)\left(\mathrm{N}_{\mathrm{D}} \mathrm{~d}_{\mathrm{n}}{ }^{2}+\mathrm{N}_{\mathrm{A}} \mathrm{~d}_{\mathrm{p}}{ }^{2}\right) \\
& \mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{~V}_{\mathrm{o}} / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{D}}\left(\mathrm{~N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right)\right)\right\}\right. \\
& \mathrm{d}=\mathrm{d}_{\mathrm{p}}+\mathrm{d}_{\mathrm{n}}=\sqrt{ }\left\{\left(2 \varepsilon_{0} \varepsilon_{\mathrm{r}}\left(\mathrm{~V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{A}}\right) / \mathrm{e}\right)\left(\mathrm{N}_{\mathrm{D}}+\mathrm{N}_{\mathrm{A}}\right) / \mathrm{N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}\right\} \\
& \mathrm{J}=\mathrm{J}_{\mathrm{o}}\left\{\operatorname{expeV} \mathrm{~A}_{\mathrm{A}} / \mathrm{kT}-1\right\} \text { where } \mathrm{J}_{\mathrm{o}}=\mathrm{en}_{\mathrm{i}}^{2}\left\{\mathrm{D}_{\mathrm{p}} / \mathrm{N}_{\mathrm{D}} \mathrm{~L}_{\mathrm{p}}+\mathrm{D}_{\mathrm{n}} / \mathrm{N}_{\mathrm{A}} \mathrm{~L}_{\mathrm{n}}\right\}
\end{aligned}
$$

