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3.091 – Introduction to Solid State Chemistry


Lecture Notes No. 5


X-RAYS AND X-RAY DIFFRACTION


* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Sources for Further Reading: 

1. Azaroff, L.V., Introduction to Solids, McGraw-Hill, 1960. 
2. Wert, C.A., and Thomson, R.M., Physics of Solids, McGraw-Hill, 1970. 
3. Nuffield, E.W., X-Ray Diffraction Methods, Wiley, 1966. 
4. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley, 1960. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

1. HISTORICAL INTRODUCTION 

X-rays were discovered during the summer of 1895 by Wilhelm Röntgen at the 

University of Würtzburg (Germany). Röntgen was interested in the cathode rays 

(beams of electrons) developed in discharge tubes, but it is not clear exactly which 

aspects of cathode rays he intended to study. By chance he noticed that a fluorescent 

screen (ZnS + Mn++) lying on a table some distance from the discharge tube emitted a 

flash of light each time an electrical discharge was passed through the tube. Realizing 

that he had come upon something completely new, he devoted his energies to 

investigating the properties of the unknown ray “X” which produced this effect. The 

announcement of this discovery appeared in December 1895 as a concise ten page 

publication. 

The announcement of the discovery of X-rays was received with great interest by the 

public. Röntgen himself prepared the first photographs of the bones in a living hand, 

and use of the radiation was quickly adopted in medicine. In the succeeding fifteen 

years, however, very few fundamental insights were gained into the nature of 
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X-radiation. There was some indication that the rays were waves, but the evidence was 

not clear-cut and could be interpreted in several ways. Then, at the University of 

Munich in 1912, Max von Laue performed one of the most significant experiments of 

modern physics. At his suggestion, Paul Knipping (who had just completed a doctoral 

thesis with Röntgen) and Walter Friedrich (a newly appointed assistant to Sommerfeld) 

directed a beam of X-rays at a crystal of copper sulfate and attempted to record the 

scattered beams on a photographic plate. The first experiment was unsuccessful. The 

result of a second experiment was successful. They observed the presence of spots 

produced by diffracted X-ray beams grouped around a larger central spot where the 

incident X-ray beam struck the film. This experiment demonstrated conclusively that 

X-radiation consisted of waves and, further, that the crystals were composed of atoms 

arranged on a space lattice. 

2. ORIGIN OF X-RAY SPECTRA 

The interpretation of X–ray spectra according to the Bohr theory (LN-1) of electronic 

levels was first (and correctly) proposed by W. Kossel in 1920: the electrons in an atom 

are arranged in shells (K, L, M, N, corresponding to n = 1, 2, 3, 4, ..., etc.). Theory 

predicts that the energy differences between successive shells increase with 

decreasing n and that the electron transition from n = 2 to n = 1 results in the emission 

of very energetic (short wavelength) radiation (fig. 1), while outer shell transitions (say, 

M 

N outer shell transitions are associated with 
small ΔE, i.e. with the emission of radiation 
of long wave lengths 
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(x-rays) 

(x-rays) 
inner shell transitions 
are associated with large 
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n=4 

K 

3 
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Figure 1 X-rays are generated by inner shell electron transitions 
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from n = 5 to n = 4) yield low energy radiation (long wavelength). For hydrogen, you 

recall, the wave number of the emitted radiation associated with a particular electron 

transition is given by the Rydberg equation: 

1 
� � � 1 � � R 

n2 n2 
i f 

For “hydrogen-like” atoms with the atomic number Z (containing one electron only) the 

corresponding Rydberg equation becomes: 

1 
� � � 1 � � RZ2 

n2 n2 
i f 

From this relationship it is apparent that the energy difference associated with electron 

transitions increases strongly with the atomic number and that the wavelength of 

radiation emitted during such transitions moves with increasing Z from the 10–7 m 

range to the 10–10 m range (radiation now defined as X-rays). 

To bring about such inner shell transitions requires the generation of an electron 

vacancy: an electron must be removed, for example from the K shell (n = 1), of an 

atom. Such a vacancy is conveniently produced in an X-ray tube by an electron beam 

(generated by a heated filament which is made a cathode) impinging, after being 

subjected to an accelerating potential of several kV, into a target material made anode 

(fig. 2). The impinging electrons will transfer part of their energy to electrons of the 

x-rays (Kα) 
1-50 kV 

e - (K shell) 

e - (from beam) 

M 
L x-rays

cathode 
e- beam 

target material 

H2O cooled 
K 

vacuum 
x-rays target material (Cu for ex.) 

anode 

Figure 2 Generation of x-rays 
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target material and result in electronic excitation. If the energy of the arriving electrons 

is high enough, some may knock out a K shell electron in the target and thus generate 

a vacancy. [It should be clear that a K → L excitation cannot take place since the L shell 

is filled: excitation must involve (n = 1) → (n = ∞).] When such a vacancy is generated, 

it can readily be filled by an electron from the L shell or the M shell of the same atom. 

These internal electron transitions give rise to the emission of “characteristic” 

X-radiation which, because of its short wavelength, has extremely high “penetrating” 

power. [Since an electron beam is used to generate X-rays, the X-ray tube has to be 

evacuated: to dissipate the energy flux arriving at the target, the anode support (onto 

which the target is mounted) is water-cooled.] 

Under standard operating conditions, the characteristic radiation emitted by the target 

comprises two sharp lines, referred to as Kα and Kβ lines (fig. 3). They are associated, 

respectively, with electron transitions from n = 2 to n = 1 and from n = 3 to n = 1. 

Emitted X-ray spectra were extensively studied by H.G.J. Moseley who established the 

relationship between the wavelength of characteristic radiation and the atomic number 

Z of the radiation emitting target material (fig. 4). Experimentally he found that the Kα 

lines for various target materials (elements) exhibit the relationship: 

�K� � 
Z
1
2 

(�K� � Z2) 

Moseley’s empirical relationship (which reflects a behavior in agreement with the 

Rydberg equation) can be quantified. While the energy levels associated with outer 

electron transitions are significantly affected by the “screening” effect of inner electrons 

(which is variable and cannot as yet be determined from first principles), the conditions 

associated with X-ray generation are simple. Very generally, the screening effect of the 

innermost electrons on the nuclear charge is accounted for in an effective nuclear 
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λ Kβ = .6323x10 - 10 m 

n = 2 (L shell) 

λ Kα  = 0.7101x10 - 10 m 

10


An additional set of characteristic spectral lines (Lα ,Lβ) can be 
observed at longer wavelengths. These reult from transitions

 n = 3 to n = 2 and n = 4 to n = 2 

λswl =f(V) .7101 wavelength (Ã) 

Spectrum of molybdenum (Mo) at 35 kV 
(schematic). 

Electronic transitions that give rise to character
istic lines of X - ray spectra. The subscripts 
α, β, γ and δ designate the change in principle 
quantum number and are not related to intensity 

Kα 

Kβ 

Kγ 
Kδ 

Lα Lβ 
Lγ 

Mα 
Mβ 

Figure 3 Electronic transitions giving rise to characteristic X- ray spectra. 

*************************************************************************************************************** 

charge (Z-σ) and the Rydberg equation assumes the form: 

1 
� � �

n
1
2 
� 

n2� R (Z  �  �)2 


i f


where σ = screening effect 
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Kα K shell. Thus it is 

possible to use the 

ν modified Rydberg 

Figure 4 Moseley relationship for Kα and Lα radiation	 equation, taking σ = 1. 

Accordingly, we have: 

�K� � �
2
1
2 
� 

1
1
2
� R (Z  � 1)2 � � 3

4  
R (Z  � 1)2 

where: R = Rydberg constant and Z = atomic number of the target material. [The minus 

sign (–) only reflects radiative energy given off by the system.] 

Similarly, for the characteristic Lα series of spectral lines (n = 3 to n = 2) we find, after 

removal of one L electron, that the screening of the electrons in the K shell and the 

remaining electrons in the L shell reduces the nuclear charge by 7.4 (empirical value). 

�L� � � 1 � 1 � R (Z  � 7.4)2 � �  5  R (Z  � 7.4)2 

32 22	 36 

A second look at the X-ray spectrum of a Mo target, obtained with an electron 

accelerating potential of 35 kV (fig. 5), shows that the characteristic radiation (Kα, Kβ) 

appears superimposed on a continuous spectrum (continuously varying λ) of lower and 

varying intensity. This continuous spectrum is referred to as bremsstrahlung (braking 

radiation) and has the following origin. Electrons, impinging on the target material, may 

lose their energy by transferring it to orbiting electrons, as discussed above; in many 

instances, however, the electrons may come into the proximity of the force fields of 

target nuclei and, in doing so, will be “slowed down” or decelerated to a varying degree, 
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Figure 5 X-ray spectrum of Mo target 
as a function of applied Voltage. 

ranging from imperceptible deceleration to total arrest. The energy lost in this slowing 

down process is emitted in the form of radiation (braking radiation, or bremsstrahlung). 

This energy conversion, as indicated, can range from partial to complete (fig. 6). The 

e- (Ek1) 

e - (Ek2) 

hν Bremsstrahlung 

K 

L 
Ek1 = Ehν + Ek2 

for Ek2 = 0, E(hν)max = Ek1 = λSWL = hν = eV ; λswl = hc/eV 

Figure 6 Origin of Bremsstrahlung; the continuous part of the X-ray spectrum 

incident electrons have an energy of e.V (electronic charge times accelerating Voltage) 

in the form of kinetic energy (mv2/2), and their total energy conversion gives rise to a 
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Shortest Wavelength (SWL) – the cut-off of the continuous spectrum for decreasing 

values of λ (fig. 5). Analytically, we have: 

c hceV � h�max � h ; �SWL � 
eV�SWL 

From this relationship it is evident that the cut-off of the continuous spectrum toward 

decreasing λ’s (λSWL) is controlled by the accelerating potential (fig. 5). 

3. THE “FINE STRUCTURE” OF CHARACTERISTIC X-RA YS 

It is customary to consider the characteristic X-ray spectral lines as discrete lines (Kα, 

Kβ, Lα, Lβ, etc.). In reality, they are not discrete since the electron shells involved in the 

associated electron transitions have energy sublevels (s, p, d orbitals). These sublevels 

give rise to a “fine structure” insofar as the Kα lines are doublets composed of Kα1 and 

Kα2 lines. Similarly, Lα, Lβ, etc., exhibit a fine structure. 

These considerations suggest that X-ray spectra contain information concerning the 

energetics of electronic states. Obviously, analysis of X-rays emitted from a target of 

unknown composition can be used for a quantitative chemical analysis. [This approach 

is taken routinely in advanced scanning electron microscopy (SEM) where X-rays, 

generated by the focused electron-beam, are analyzed in an appropriate spectrometer.] 

In fundamental studies it is also of interest to analyze soft (long λ) X-ray spectra. For 

example, take the generation of X-rays in sodium (Na). By generating an electron 

vacancy in the K shell, a series of Kα and Kβ lines will result. The cascading electron 

generates vacancies in the 2p level, which in turn can be filled by electrons entering 

from the 3s level (generation of “soft” X-rays). If the X-rays are generated in a Na vapor, 

the 3s → 2p transition will yield a sharp line; on the other hand, if X-rays are analyzed 

in sodium metal, the same transition results in the emission of a continuous broad 

band, about 30 Å in width. This finding confirms the existence of an energy band 

(discussed earlier). 
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An analysis of the width and intensity distribution of the X-ray band provides 

experimental data concerning the energy band width and the energy state density 

distribution within the energy band (fig. 7). 
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Figure 7 Soft X-rays from 3s - 2p transitions
 in solid Na and Na vapor 

4. USE OF X-RAYS FOR STRUCTURAL ANAL YSIS 

The extensive use of X-rays for the analysis of atomic structural arrangements is based 

on the fact that waves undergo a phenomenon called diffraction when interacting with 

systems (diffracting centers) which are spaced at distances of the same order of 

magnitude as the wavelength of the particular radiation considered. X-ray diffraction in 

crystalline solids takes place because the atomic spacings are in the 10–10 m range, as 

are the wavelengths of X-rays. 

5. DIFFRACTION AND BRAGG’S LA W 

The atomic structure of crystalline solids is commonly determined using one of several 

different X-ray diffraction techniques. Complementary structure information can also be 

obtained through electron and neutron diffraction. In all instances, the radiation used 

must have wavelengths in the range of 0.1 to 10 Å because the resolution (or smallest 

object separation distance) to which any radiation can yield useful information is about 
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equal to the wavelength of the radiation, and the average distance between adjacent 

atoms in solids is about 10–10m (1 Å). Since there is no convenient way to focus X-rays 

with lenses and to magnify images, we do not attempt to look directly at atoms. Rather, 

we consider the interference effects of X-rays when scattered by the atoms, comprising 

a crystal lattice. This is analogous to studying the structure of an optical diffraction 

grating by examining the interference pattern produced when we shine visible light on 

the grating. (The spacing of lines on a grating is about 0.5 to 1 µm and the wavelength 

of visible radiation ranges from 0.4 to 0.8 µm.) In the optical grating the ruled lines act 

as scattering centers, whereas in a crystal it is the atoms (more correctly, the electrons 

about the atom) which scatter the incident radiation. 

The geometrical conditions which must be satisfied for diffraction to occur in a crystal 

were first established by Bragg. He considered a monochromatic (single wavelength) 

beam of X-rays with coherent radiation (X-rays of common wave front) to be incident 

on a crystal, as shown in fig. 8. Moreover, he established that the atoms which 

θ 
θ 

A 
B 

C 
d(hkl) 

incoming 
beam 

diffracted 
beam 

1 

2 

2θ 

D 

Figure 8 Bragg's law, assuming the planes of
 atoms behave as reflecting planes. 

constitute the actual scattering centers can be represented by sets of parallel planes (in 

which the atoms are located) which act as mirrors and “reflect” the X-rays. In cubic 

systems the spacing of these planes, d(hkl) (see LN-4), is related to the lattice constant 
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(a): 

d(hkl) � � 
a (1)


h2 � k2 � l2


For constructive interference of the scattered X-rays (the appearance of a diffraction 

peak) it is required that the beams, scattered on successive planes, be “in phase” (have 

again a common wave front) after they leave the surface of the crystal. In terms of the 

beams labeled 1 and 2 in fig. 8 this requires that the distance AB + BC be equal to an 

integral number of wavelengths (λ) of the indicent radiation. Accordingly: 

AB � BC � n� (n � 1, 2, 3, ���) 

Since AB = BC and sin � � AB [AB � d(hkl) sin �] :
d(hkl) 

n� � 2d(hkl) sin � (2) 

This relation is referred to as Bragg’s Law and describes the angular position of the 

diffracted beam in terms of λ and d(hkl). In most instances of interest we deal with first 

order diffraction (n = 1) and, accordingly, Bragg’s law is: 

� � 2d(hkl) sin � 

[We are able to make n = 1 because we can always interpret a diffraction peak for 

n = 2, 3, ... as diffraction from (nh nk nl) planes – i.e., from planes with one-nth the 

interplanar spacing of d(hkl).] 

If we consider fig. 8 as representative for a “diffractometer” set-up (fig. 11), we have a 

collimated beam of X-rays impinging on a (100) set of planes and at 2θ to the incident 

beam a detector which registers the intensity of radiation. For a glancing incident beam 

(small θ) the detector will register only background radiation. As θ increases to a value 

for which 2d sin θ = λ, the detector will register high intensity radiation – we have a 
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diffraction peak. From the above it is evident that the diffraction angle (θ) increases as 

the interplanar spacing, d(hkl), decreases. 

The diffraction experiment as presently considered is intended to provide quantitative 

information on the volume (the lattice constant a) and shape characteristics (SC, BCC, 

FCC) of the unit cell. The intensity of diffraction peaks depends on the phase 

relationships between the radiation scattered by all the atoms in the unit cell. As a 

result, it happens quite often that the intensity of a particular peak, whose presence is 

predicted by Bragg’s law, is zero. (This is because Bragg’s law deals not with atom 

positions, but only with the size and shape of the unit cell.) For example, consider the 

intensity of the (100) diffraction peak of a crystal which has a BCC unit cell. The phase 

relationships show that the X-rays scattered at the top and bottom faces of the unit cell, 

(100) planes, interfere constructively, but are 180� out of phase with the X-rays 

scattered by the atom at the center of the unit cell. The resultant intensity is therefore 

zero. The rules which govern the presence of particular diffraction peaks in the different 

cubic Bravais lattices (SC, BCC and FCC) are given in Table I. 

TABLE I.  Selection Rules for Diffraction Peaks in Cubic Systems 

Bravais Lattice Reflections Present Reflections Absent 

Simple Cubic All None 

Body-Centered Cubic (h+k+l) = even (h+k+l) = odd 

Face-Centered Cubic h,k,l unmixed h,k,l mixed 
(either all odd 

or all even) 

The rules given are strictly true only for unit cells where a single atom is associated with 

each lattice point. (Unit cells with more than one atom per lattice point may have their 

atoms arranged in positions such that reflections cancel. For example, diamond has an 

FCC Bravais lattice with two atoms per lattice point. All reflections present in diamond 

have unmixed indices, but reflections such as {200}, {222} and {420} are missing. The 
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fact that all reflections present have unmixed indices indicates that the Bravais lattice is 

FCC – the extra missing reflections give additional information as to the exact atom 

arrangement.) 

A hypothetical diffraction experiment: A material is known to be of simple cubic 

structure; determine a, the lattice constant, by X-ray diffraction. In theory, the question 

may be answered by placing the crystal into a diffractometer, rotating it into all 

possible positions relative to the incident X-ray beam and recording all diffracting 2θ 

values. From the above we know that the smallest observed θ value must correspond 

to diffraction on {100} planes and also that d(100) = a. We may now use Bragg’s 

equation to determine a, the lattice constant: 

� � 2d sin � � 2a sin �


a � 
2 sin � 

There are two simplifying assumptions in this problem: (1) we know the system is SC 

and (2) we are able, through rotation, to bring all planes present into diffraction 

conditions. 

6. EXPERIMENTAL APPROACHES T O X-RAY DIFFRACTION 

In the context of this course we are interested in making use of X-ray diffraction for the 

purpose of (a) identifying (cubic) crystal systems, (b) determining the lattice constant, a, 

and (c) identifying particular planes or meaningful orientations. The possible 

approaches can, in principle, be identified through an examination of Bragg’s law. The 

Bragg condition for particular d(hkl) values can be satisfied by adjusting either one of 

two experimental variables: (a) λ, the wavelength of the X-ray beam used, or (b) θ, the 

orientation of the crystal planes relative to the incident X-rays. 
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(a) Fixed θ, Variable λ: One means of satisfying Bragg’s law is to irradiate a stationary 

single crystal (θ fixed for all planes within the crystal) with an X-ray beam of “white” 

radiation, which contains the characteristic and continuous spectrum produced by an 

X-ray tube. (For λ variable we have the simultaneous exposure of a crystal to a range 

of λ values). Each set of planes will reflect (diffract) the particular λ which satisfies the 

Bragg condition for the fixed θ. The diffracted beams may conveniently be recorded 

with a Polaroid camera or, alternately, with an electronic imaging device. It is possible to 

analyze either the transmitted or the back-reflected X-rays. This experimental 

procedure is referred to as the Laue technique (fig. 9); it is mostly conducted in the 

(a) 

crystal 

film 

(b) 

X-raysX-rays 
film

crystal 

Figure 9 Laue diffraction in (a) transmission and (b) back-reflection mode 

back-reflection mode. Note that the approach taken makes it possible to determine the 

values of θ for each reflection, but not the corresponding λ. Therefore, the technique 

cannot be used, for example, to determine lattice constants. However, it is very 

valuable if particular planes or crystal orientations are to be identified. 

(b) Fixed λ (Monochromatic X-Rays), Variable θ: The basic prerequisite for this 

approach is the availability of a monochromatic X-radiation of known wavelength (λ). 

Such radiation can be conveniently obtained by using a crystal (i.e., its diffracting 

property) as a filter or monochromator (fig. 10). Filter action is achieved by positioning 

the crystal in such a way that the unfiltered radiation emitted by the X-ray tube 

becomes incident at an angle, θ, on a set of low index planes which satisfy Bragg’s law 
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Crystal monochromator 

x-rays "white" 

from tube 

λ Ka radiation 

Figure 10 Isolation of monochromatic
 radiation from target radiation 

for the highest intensity radiation (Kα) emitted. The condition of a fixed λ and variable 

θ is experimentally used in two techniques. Using a diffractometer (fig. 11), we place a 

θ 

2θ 

crystal 

x-rays 
from generatior 

r-ray 

(being rotated 
into diffr. conditions) 

sample (ground to a powder) 

detector into the center of a rotating 

stage and expose it to a
monochromator 

monochromatic X-ray beam. 

The sample is rotated into 

diffraction condition and the 

diffraction angle determined. 

In the Debye-Scherrer 

Figure 11 X-ray Diffractometer setup. method (fig.12) the sample 

is ground to a powder and placed (in an ampoule) into the center of a Debye-Scherrer 

camera. Exposed to monochromatic X-rays, in this way a large number of diffracted 

cone-shaped beams are generated such that the semiangles of the cones measure 2θ, 

or twice the Bragg angle for the particular diffracting crystallographic planes. The 

reason diffracted beams are cone-shaped is that the planes in question (within the 

multitude of randomly oriented grains) give rise to diffraction for any orientation around 

the incident beam as long as the incident beam forms the appropriate Bragg angle with 

these planes – thus there is a rotational symmetry of the diffracted beams about the 
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x-rays 
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Kα radiation 
2θ2 

2θ1 

2θ1 
2θ2

2θ4 

2θ 

opened filmstrip 

0o 180o 2θ 

entrance 

filmstrip 

diffraction cones 

Figure 12 Debye-Scherrer powder diffraction setup and analysis 

direction of the incident beam. Those planes with the largest interplanar spacing have 

the smallest Bragg angle, θ. 

In a Debye–Scherrer arrangement, after exposing a powder of a crystalline material to 

monochromatic X-rays, the developed film strip will exhibit diffraction patterns such as 

indicated in fig. 12. Each diffraction peak (dark line) on the film strip corresponds to 

constructive interference at planes of a particular interplanar spacing [d(hkl)]. The 

problem now consists of “indexing” the individual lines – i.e., determining the Miller 

indices (hkl) for the diffraction lines: 

Bragg: � � 2d(hkl) sin � ; d(hkl) � �h2 � 
a
k2 � l2 

�
2 � 4d2 sin2 

� ; d2 � a2 
(hkl) (hkl) (h2 � k2 � l2) 
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Substitution and rearrangement of above yields: 

sin2 
� � �

2 
� const. 

(h2 � k2 � l2) 4a2 

Accordingly, we find that for all lines (θ values) of a given pattern, the relationship 

sin2 
�1 sin2 

�2 sin2 
�3� � � const. 

(h2 � k2 � l2)1 (h2 � k2 � l2)2 (h2 � k2 � l2)3 

holds. Since the sum (h2 + k2 + l2) is always integral and λ2/4a2 is a constant, the 

problem of indexing the pattern of a cubic system is one of finding a set of integers 

(h2 + k2 + l2) which will yield a constant quotient when divided one by one into the 

observed sin2θ values. (Certain integers such as 7, 15, 23, etc. are impossible because 

they cannot be formed by the sum of three squared integers.) 

Indexing in step-by-step sequence is thus performed as follows: θ values of the lines 

are obtained from the geometric relationship of the unrolled film strip. Between the exit 

hole of the X-ray beam (2θ = 0�) and the entrance hole (2θ = 180�) the angular 

relationship is linear (fig. 12). The increasing θ values for successive lines are indexed 

θ1, θ2, θ3, etc., and sin2θ is determined for each. If the system is simple cubic we know 

that all planes present will lead to diffraction and the successive lines (increasing θ) 

result from diffraction on planes with decreasing interplanar spacing: (100), (110), (111), 

(200), (210), (211), (220), etc. From equation (3) above we recognize: 

sin2 
�1 sin2 

�2 sin2 
�3 sin2 

�4 sin2 
�5� � � � � const.

1 2 3 4 5 

If the system is BCC, however, we know from the selection rules that only planes for 

which (h + k + l) = even will reflect. Thus: 

sin2 
�1 sin2 

�2 sin2 
�3 sin2 

�4� � � etc. � const.
2 4 6 8 
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[SC can be differentiated from BCC through the fact that no sum of three squared 

integers can yield 7, but 14 can be obtained from planes (321)]. 

For FCC systems, the selection rules indicate reflections on planes with unmixed h,k,l 

indices: 

sin2 

3 
�1 � 

sin2 

4 
�2 � 

sin2 

8 
�3 � � const. 

After proper indexing, the constant is obtained: 

sin2 
� � const. 

(h2 � k2 � l2) 

and the particular Bravais lattice is identified. The lattice constant of the unit cell is 

subsequently obtained, knowing the wavelength of the incident radiation: 

sin2 
� � const. � �

2 

(h2 � k2 � l2) 4a2 

a2 � �
2 

(h2 � k2 � l2)
4 sin2 

�


a � � �(h2 � k2 � l2)

2 sin � 
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