Session #23: Homework Problems

Problem #1

The decomposition of hydrogen peroxide, H_2O_2 , can be represented by the following reaction:

$$2\mathrm{H}_{2}\mathrm{O}_{2(\mathrm{aq})} \rightarrow 2\mathrm{H}_{2}\mathrm{O}_{(\mathrm{I})} + \mathrm{O}_{2(\mathrm{g})}$$

The table below reports data taken at room temperature (300 K).

$conc_{H_2O_2}$ (mol/liter)	time (seconds)
2.32	0
2.01	200
1.72	400
1.49	600
0.98	1200
0.62	1800
0.25	3000

Table 1. Decomposition of $H_2O_{2(aq)}$ at 300 K.

- (a) Show that the reaction is first order.
- (b) Calculate the value of the half-life of this reaction.
- (c) Suppose that the initial concentration of H_2O_2 were 3.5 M. How long would it take at 300 K to reduce the concentration of H_2O_2 to 25% of its initial value?

Problem #2

A chemical reaction which has an activation energy of 167.0 kJ/mole is to proceed at T = 450 K with a very constant rate; the rate is allowed to vary at most by $\pm 1\%$. How constant must the temperature be to achieve this required rate stability? (For T>> Δ T, T₁ x T₂ = T²)

Problem #3

Determine the diffusivity (D) of lithium (Li) in silicon (Si) at 1200°C, knowing that $D_{1100^{\circ}C} = 10^{-5} \text{ cm}^2/\text{s}$ and $D_{695^{\circ}C} = 10^{-6} \text{ cm}^2/\text{s}$.

Problem #4

For a chemical reaction, the concentrations of reactant as a function of time are given below for 25°C and for 50°C.

at 25°C		at 50°C	at 50°C	
time (h)	conc. (mole/L)	time (min)	conc. (mole/L)	
.00	0.1039	0	0.1056	
3.15	0.0896	9	0.0961	
10.00	0.0639	18	0.0856	
13.50	0.0529	54	0.0536	
26.00	0.0270	105	0.0270	
37.30	0.0142	180	0.0089	

- (a) Indicate schematically (in two different graphic presentations) how you could prove, given concentration data at certain times, that a reaction is of first order.
- (b) Determine, from graphic presentations, the rate constants (k) for the given reaction at 25°C and 50°C.
- (c) Determine the half-life $(t_{1/2})$ for the reaction at 50°C.
- (d) Determine the half-life $(t_{1/2})$ for the reaction at 70°C.
- (e) What is the time required for the reaction at 25°C to be completed to the extent of 42%?

Problem #5

In a chemical reaction the concentration of a rate determining component is measured (in moles) at one minute intervals from zero to 5 minutes. The data are: 1.0×10^{-2} , 0.683×10^{-2} , 0.518×10^{-2} , 0.418×10^{-2} , 0.350×10^{-2} and 0.301×10^{-2} .

- (a) Determine the order (n) of this reaction.
- (b) Determine the rate constant (k).
- (c) Determine the half-life of this reaction.

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.