3.091 OCW Scholar

Self-Asessment Bonding and Molecules

Supplemental Exam Problems for Study

A	41- ~	\mathcal{L}_{\sim} 11	1 ~ ~ ~ ~ ~ ~	questions	~ l~ ~ ~ · · ·
A new/er	me	101	imw/ino	anesnans	anom
INDVICE	uic	101	10 11 1115	questions	uooui

hydrogen peroxide (H₂O₂).

- (a) Draw the Lewis structure of H₂O₂.
- (b) Draw a 3-dimensional representation of the molecular geometry of the molecule.

- (c) Name the geometry of the electron distribution about the oxygen atoms.
- (d) Determine the per cent ionic character of the O-H bond.
- (e) Is the molecule polar or nonpolar? Explain.
- (f) Is it chiral or achiral? Explain.
- (g) Calculate the maximum wavelength of a beam of neutrons capable of breaking the O–H bond in $\rm H_2O_2$.

DATA: Average Bond Energies (kJ/mol)

O-O 142

Н–Н 432

(a) Draw the Lewis structure of trichloromethane ($CHCl_3$).

(b) Is CHCl₃ polar or nonpolar? Explain.

(c) Calculate the maximum wavelength of electromagnetic radiation capable of breaking the C–Cl bond in CHCl₃.

DATA: bond energy (kJ/mol)

$$C-C = 346$$

$$C1-C1 = 240$$

$$H-H = 432$$

Sketch the relationship between potential energy ($E_{\rm potential}$) and internuclear distance (r) for the interaction between a bromide ion (Br⁻) and an iodide ion (I⁻). For reference, the distance $r_{\rm o} = r_{\rm Br} + r_{\rm I^-}$ is shown. No calculations necessary.

(a)	For each set of chemical species, rank in order of boiling point from lowest to highest. Justify with reference to the operative chemical bonding.
	(i) Ar and HCl and F ₂
	(ii) CH ₄ and CF ₄ and HF
Pro	oblem #5
(a)	Draw a 3-dimensional representation of the molecular geometry around the central atom (not simply the Lewis structure) of BrF ₃ .
(b)	Name the type of hybrid orbitals that the central atom forms.
(c)	State whether the molecule is polar or nonpolar. Justify.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.