Self-Assessment: Bonding and Molecules

Weekly Homework Quiz – Solution Outlines

Problem #1

 $\pi_{2p_{x,y}}^{*}, \sigma_{2p_z}^{*}.$

(a) Draw the energy level diagram that shows that the linear combination of atomic orbitals from two atoms of oxygen (O) results in the formation of the stable molecule, $O_2^{2^-}$. The molecular orbitals in $O_2^{2^-}$ increase in energy according to the sequence σ_{2s} , σ_{2s}^* , σ_{2p_z} , $\pi_{2p_{x,y}}$,

(b) Indium phosphide (InP) is a semiconductor with a band gap, E_g , of 1.27 eV. Calculate the value of the absorption edge of this material. Express your answer in meters.

for absorption of incoming radiation, the following must be true:

 $E_{radiation} = E_g$

using the Planck relationship gives the wavelength of the absorption edge

$$E_{radiation} = \frac{hc}{\lambda}$$

$$\therefore \quad \lambda = \frac{hc}{E_g} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.27 \times 1.6 \times 10^{-19}} = 9.74 \times 10^{-7} m$$

Problem #2

Chemical analysis of a silicon (Si) crystal reveals boron (B) at a level of 0.0003 atomic percent.

(a) Assuming that the concentration of thermally excited charge carriers from the Si matrix is negligible, calculate the density of free charge carriers (carriers/cm³) in this Si crystal.

each B atom will attract an electron and thus create a "mobile hole"; we only have to determine the number of B atoms/cm³ of Si. The atomic volume of the host crystal (Si) is given on your PT as 12.05 cm^3 /mole.

Si atoms/cm³ = $\frac{6.02 \times 10^{23} atoms}{1 mole} \times \frac{1 mole}{12.05 cm^3} = 5.00 \times 10^{22} atoms/cm^3$

:. # B atoms/cm³ = $5.00 \times 10^{22} \times 0.0003 \times 10^{-2} = 1.50 \times 10^{17} \text{ B/cm}^3$

thus, the number of free charge carriers ("holes") is 1.50×10^{17} /cm³; they are created through the acquisition of one electron by each B atom from the valence band of the host Si crystal.

(b) Draw a schematic energy band diagram for this material and label the valence band, conduction band, band gap, and the energy level associated with the B impurity.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.