Session #8: Homework Problems

Problem #1

Two lasers generate radiation of (1) 9.5 μ m and (2) 0.1 μ m respectively.

- (a) For each of the radiations, determine the photon energy (in eV).
- (b) Will either of the two radiations be able to break (dissociate) the Si–H bond in SiH4? Given: E_{Si–Si} = 180 kJ/mole

 $E_{H-H} = 435 \text{ kJ/mole}$

Problem #2

The equilibrium distance in diatomic LiF is 1.52Å. Assuming ionic bonding between the two atoms, calculate the energy required to separate them: $\text{Li}^+ - \text{F}^- \rightarrow \text{Li}^+ + \text{F}^-$. (Without additional information your answer should be correct to within 10%.)

Problem #3

Covalent bonds are directional and "saturated"; ionic bonds are "unsaturated" and "non-directional".

(a) Explain why.

(b) What are general consequences of the differences in the bonding characteristics?

Problem #4

Write the chemical formulas for the *ionic* compound formed by interaction of the elements:

- (1) calcium and fluorine (6) cesium and bromine
- (2) aluminum and chlorine (7) strontium and selenium
- (3) potassium and sulfur
- (8) copper and chlorine
- (4) iron and oxygen
- (9) cobalt and fluorine
- (5) zinc and chlorine (10) titanium and oxygen

Problem #5

Attempt to account for the following properties of an ionic material:

- (a) transparent
- (b) insulators (electric)
- (c) conductors (electric)

[No more than a sketch (if you wish) and four lines of text/answer.]

Problem #6

Hydrogen and selenium react with each other to form a compound.

- (a) What is the chemical formula of the compound?
- (b) At room temperature, do you expect this compound to be a solid, a liquid or a gas? Substantiate your answer.

Problem #7

(a) Determine the differences in relative electronegativity (Δx in eV) for the systems H–F and C–F given the following data:

Bond Energy	kJ/mole
H ₂	436
F_2	172
C-C	335
H-F	565
C-H	410

(b) Taking $X_H = 2.1$, determine the relative electronegativities (in eV) for C and F.

Problem #8

For NaF the repulsive (Born) exponent, n, is 8.7. Making use of data given in your Periodic Table, attempt to calculate the crystal energy (ΔE_{cryst}). (What assumption do you have to make to calculate ΔE_{cryst} ?)

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.