

Massachusetts Institute of Technology Department of Materials Science & Engineering

Randolph Kirchain

Effective Interest Rates

When you want to express i_e annually:

$$i_e = (1 + \frac{r}{M})^M - 1$$

Or more generally, for an arbitrary period:

$$i_e = (1 + \frac{r}{CK})^C - 1$$

C = The number of interest periods per payment period K = The number of payment periods per year Note that r is still assumed to be expressed annually

Massachusetts Institute of Technology Department of Materials Science & Engineering 3.080 Econ & Enviro Issues In Materials Selection Randolph Kirchain Engineering Economic Analysis: Slide 55

Using S	pre	eadsheets:	uivalonco		
	Type	Notation	Formula	Excel	
	Single	Compound Amount (F/P,i,N)	$F = P(1+i)^N$	FV(i,N,,P)	
		Present Worth (P/F,i,N)	$P = F / (1+i)^N$	PV(i,N,,P)	
		Compound Amount (F/A, i, N)	$F = A\left(\frac{(1+i)^N - 1}{i}\right)$	FV(i,N,A)	·
	l Series	Sinking Fund (A/F, i, N)	$A = F\left(\frac{i}{\left(1+i\right)^{N}-1}\right)$	PMT(i,N,0,F)	
ſ	Uniform	Present Worth (P/A, i, N)	$P = A\left(\frac{(1+i)^N - 1}{i(1+i)^N}\right)$	PV(i,N,A)	*
		Capital Recovery (A/P, i, N)	$A = P\left(\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right)$	PMT(i,N,P)	
	Linear Gradient	Present Worth (P/G, i, N)	$P = G\left(\frac{(1+i)^{N} - iN - 1}{i^{2}(1+i)^{N}}\right)$	manual	
	Geometric Gradient	Present Worth (P/A ₁ ,g, i, N)	$P = \begin{cases} A_{i} \left(\frac{1 - (1 + g)^{N} (1 + i)^{-N}}{i - g} \right) \\ \frac{NA_{i}}{(1 + i)}, \text{if } i = g \end{cases}$	manual	
	Geol Gra	(P/A ₁ ,g, I, N)	$\frac{NA_{i}}{(1+i)}, \text{if } i = g$ Engine	eering I	Economic A

Computing Present Worth

- To compute present worth
 - Calculate discounted cash flow (i.e., present worth of each cash flow)
 - Sum all discounted cash flows
- Project is worth considering if PW > 0

Over a 5 year period, your firm can make \$22,000 by running copy service. MARR=12% The associated costs are:

\$4,000 to buy copier (salvage value of \$1,000)

\$2,200 to maintain and operate copier

Massachusetts Institute of Technology Department of Materials Science & Engineering 3.080 Econ & Enviro Issues In Materials Selection Randolph Kirchain

Page 29

