

Review: Cash Flow Equivalence					
]	Type	Notation	Formula	Excel	
	Single	Compound Amount (F/P,i,N)	$F = P(1+i)^N$		
		Present Worth (P/F,i,N)	$P = F / (1+i)^N$		
		Compound Amount (F/A, i, N)	$F = A\left(\frac{(1+i)^N - 1}{i}\right)$		
	Uniform Series	Sinking Fund (A/F, i, N)	$A = F\left(\frac{i}{\left(1+i\right)^{N}-1}\right)$		
		Present Worth (P/A, i, N)	$P = A\left(\frac{(1+i)^N - 1}{i(1+i)^N}\right)$		
		Capital Recovery (A/P, i, N)	$A = P\left(\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right)$		
Plii	Massachusetts Institute of Technology Department of Materials Science & Engineering		3.080 Econ & Enviro Issues In Materials Selection Randolph Kirchain Engineering Economic Analysis: Slide 28		

Deriving Equivalence for a
Linear Gradient of Payments.

$$P = 0 + \frac{G}{(1+i)^2} + \frac{2G}{(1+i)^3} + \dots + \frac{(N-1)G}{(1+i)^N}$$

$$P = 0 + \frac{1}{n} + \frac{(N-1)G}{(1+i)^n}$$

$$P = 0 + \frac{1}{n} + \frac{1}{(1+i)^n}$$

$$P = 0 + \frac{1}{n} + \frac{1}{(1+i)^n}$$

$$P = 0 + \frac{1}{n} + \frac{1}{(1+i)^n}$$

$$P = 0 + \frac{1}{n} + \frac{1}{(1+i)^n} + \frac{1}{(1-i)^n} + \frac{1}{(1-i)^n}$$

$$D + \frac{1}{n} + \frac{1}{n} + \frac{1}{(1+i)^n} + \frac{1}{(1-i)^n}$$

$$P = G\left(\frac{(1+i)^n - iN - 1}{i^2(1+i)^n}\right)$$
Subscripts and the second second

