## Engineering Economics:

Session 2
$\prod \square$ Massachusetts Institute of Technology Department of Materials Science \& Engineering

# What is Value? 

## Review: Cash Flow Equivalence

| Type | Notation | Formula | Excel |
| :---: | :---: | :---: | :---: |
| 嗕 | Compound Amount (F/P, i, N) | $F=P(1+i)^{N}$ |  |
|  | Present Worth (P/F, i, N) | $P=F /(1+i)^{N}$ |  |
|  | Compound Amount (F/A, i, N) | $F=A\left(\frac{(1+i)^{N}-1}{i}\right)$ |  |
|  | Sinking Fund <br> (A/F, i, N) | $A=F\left(\frac{i}{(1+i)^{N}-1}\right)$ |  |
|  | Present Worth (P/A, i, N) | $P=A\left(\frac{(1+i)^{N}-1}{i(1+i)^{N}}\right)$ |  |
|  | Capital Recovery (A/P, i, N) | $A=P\left(\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right)$ |  |

## Single Payment Example

Finding $P$ given $F$

- An investor can purchase land that will be worth \$10k in 6 years
- If the investor's discount rate is $\mathbf{8 \%}$, what is the max they should pay today?

$$
\begin{aligned}
P & =F(P / F, i, N)=\frac{F}{(1+i)^{N}} \\
& =\frac{\$ 10,000}{(1+0.08)^{6}} \\
& =\$ 10,000 \cdot 0.6302 \\
& =\$ 6,300
\end{aligned}
$$

## Single Payment Example <br> Solving for i or $\mathbf{N}$

- What rate of return will you need to double your investment in 10 years?

$\rightarrow$| $P(1+i)^{10}$ | $=2 P$ |
| ---: | :--- |
| $(1+i)^{10}$ | $=2$ |
| $\ln (1+i)^{10}$ | $=\ln (2)$ |
| $10 \cdot \ln (1+i)$ | $=\ln (2)$ |
| $e^{\ln (1+i)}$ | $=e^{\frac{\ln (2)}{10}}$ |
|  | $\ln (2)$ |

$F=P(F / P, i, N)=P(1+i)^{N}$

$$
\begin{aligned}
1+i & =e^{\frac{\ln (2)}{10}} \\
i & =e^{\frac{\ln (2)}{10}}-1 \\
i & =7.2 \%
\end{aligned}
$$

## Single Payment Example

## Solving for i or N

- How many years must elapse for an investment to double at a rate of return of $6 \%$ ?
$\left\langle\begin{array}{rl}P(1+0.08)^{N} & =2 P \\ (1.08)^{N} & =2 \\ \ln (1.08)^{N} & =\ln (2) \\ N \cdot \ln (1.08) & =\ln (2) \\ N & =\frac{\ln (2)}{\ln (1.08)}\end{array}\right.$

$$
F=P(F / P, i, N)=P(1+i)^{N}
$$

$$
N=9
$$

## Discount Rate Approximation:

"Rule of 70 or 72 "

- To approximate effect of discounting:
"Rule of 72 " or "Rule of 70 "
- Number of years to double =

70 / Interest rate (in percent)

$$
\begin{aligned}
P(1+i)^{N} & =2 P & \text { for small } x \\
(1+i)^{N} & =2 & \ln (1+x) \approx x \\
\ln (1+i)^{N} & =\ln (2) & \therefore \\
N \cdot \ln (1+i) & =\ln (2) & N \approx \frac{\ln (2)}{i} \approx \frac{0.69}{i} \\
N & =\frac{\ln (2)}{\ln (1+i)} & N \approx \frac{70}{i \%}
\end{aligned}
$$

## Discount Rate Approximation:

"Rule of 70 or 72"

- To approximate effect of discounting:
"Rule of 72 " or "Rule of 70 "
- Number of years to double =

$$
70 \text { / Interest rate (in percent) }
$$

- Examples
- When would $\$ 1000$ invested at $10 \%$ double?

$$
\text { Rule } \rightarrow 7.2 \text { years } \quad \text { Actual } \rightarrow 7.273
$$

- What is the value of $\$ 1000$ in 8 years, at $9 \%$ ?

Rule $\rightarrow$ 2,000 Actual $\boldsymbol{\rightarrow}$ \$1,993

## Discount Rate Approximation：

＂Rule of 70 or 72 ＂


## Review：

Finite Series of Equal Payments

## a）Future Value（F）

$=\sum_{i}^{N} A(1+r)^{i}$
$=A \frac{\left[(1+r)^{N}-1\right]}{r}$
b）Payment（A）
$=P \times r \frac{\left[(1+r)^{N}\right]}{\left[(1+r)^{N}-1\right]}$

$=P(c r f)$
Crf＝Capital Recovery Factor
Illiii

## Using the Compound Amount Factor:

## Finding F, Given i, A, N

- Suppose:
- You put \$3k into savings for 10 years (@end of ea. yr)
- Your savings account earns 7\%
- What is your account worth after 10years?

$$
\begin{aligned}
F & =A(F / A, i, N) \\
& =A\left(\frac{(1+i)^{N}-1}{i}\right) \\
& =\$ 300\left(\frac{(1.07)^{10}-1}{0.07}\right) \\
& =\$ 300(13.82) \\
& =\$ 4,145
\end{aligned}
$$

## Using the Capital Recovery Factor:

## Finding A, given $P$

- Suppose:
- Your firm purchases lab equipment for \$250k
- The loan's interest rate is $8 \%$
- What payment will repay the loan?

$$
\begin{aligned}
A & =P(A / P, i, N) \\
& =P\left(\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right) \\
& =\$ 250,000\left(\frac{0.08(1.08)^{6}}{(1.08)^{6}-1}\right) \\
& =\$ 250,000(0.2163) \\
& =\$ 54,075
\end{aligned}
$$

## Other Special Cases:

## Linear Gradient of Cash Flows

(n-1)G

## - Series of cash flows changing by uniform amount per period.



## Deriving Equivalence for a

 Linear Gradient of Payments$P=0+\frac{G}{(1+i)^{2}}+\frac{2 G}{(1+i)^{3}}+\ldots+\frac{(N-1) G}{(1+i)^{N}}$
$P=\sum_{n}^{N} \frac{(n-1) G}{(1+i)^{n}}$
Let $x=1 /(1+i)$
$P=0+a x^{2}+2 a x^{3}+\ldots+(N-1) a x^{N}$
$P=a x\left(0+x+2 x^{2}+\ldots+(N-1) x^{N-1}\right)$
$0+x+2 x^{2}+\ldots+(N-1) x^{N-1}=x\left[\frac{1-N x^{N-1}+(N-1) x^{N}}{(1-x)^{2}}\right]$

$$
P=G\left(\frac{(1+i)^{N}-i N-1}{i^{2}(1+i)^{N}}\right)
$$

## Other Special Cases:

Geometric Series


## Geometric Gradient of Payments

$$
\begin{aligned}
P & =0+\frac{G}{(1+i)^{2}}+\frac{2 G}{(1+i)^{3}}+\ldots+\frac{(N-1) G}{(1+i)^{N}} \\
P & =\sum_{n=1}^{N} A_{1} \frac{(1+g)^{n-1}}{(1+i)^{n}} \\
P & =\left\{\begin{array}{cc}
A_{1}\left(\frac{1-(1+g)^{N}(1+i)^{-N}}{i-g}\right), & \text { if } i \neq g \\
\frac{N A_{1}}{(1+i)} & , \text { if } i=g
\end{array}\right.
\end{aligned}
$$

## Example Problem: Geometric Series

- Facility has aging cooling system which currently runs 70\% of the time the plant is open
- Pump will only last 5 more years. As it deteriorates, the pump run time is expected to increase 7\% per year
- New cooling system would only run $50 \%$ of the time
- Assumptions
- Either pump uses 250 kWh, Electricity cost \$0.05/KWh
- Plant runs 250 days per year, $\mathbf{2 4}$ hours per day
- Firm's discount rate is $\mathbf{1 2 \%}$
- What is the value of replacing the pump?


## Example Problem: Geometric Series

- Current pump
power cost =
$70 \% \times 250 \mathrm{kWh} x$
\$0.05/ kWh x 250
days x 24
hrs/ day

$$
=\$ 52,500
$$

$$
P_{\text {old }}=\$ 52,500\left(\frac{1-(1.07)^{5}(1.12)^{-5}}{0.12-0.07}\right)
$$

$$
=\$ 214,360
$$

$P_{\text {New }}=\$ 37,500(P / A, 12 \%, 5)$
$P_{\text {New }}=\$ 37,500(3.605)$

- New pump power Cost

$$
=\$ 37,500 \quad \text { Value }=P_{\text {old }}-P_{\text {New }}=\$ 79,160
$$

$$
=\$ 135,200
$$

