2 Types of Noncrystalline Polymers

- 1. Glassy polymer
- 2. Rubbery polymers

highly interpenetrated/entangled random Gaussian coils

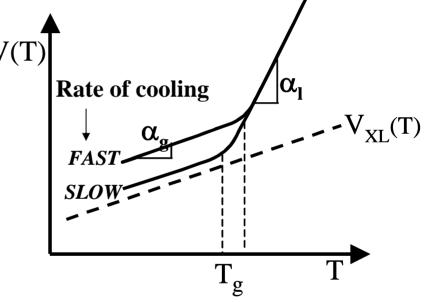
Glass Transition Temperature

 \mathcal{E}_{ij} Two viewpoints:

- Increasing T: When $kT > magnitude of \varepsilon_{ij}$, the thermal fluctuations can overcome local intermolecular bonds and the frozen ("glassy") structure becomes "fluid-like".
- Decreasing T: As the temperature is lowered and T approaches T_g , the viscosity increases to ∞ and the material becomes "solid"

Free Volume Theory of T_g

Free volume, V_F – extra space beyond what is present in an ordered crystalline packing (beyond the interstitial volume).


$$V_{F}(T) \equiv V(T) - V_{0}(T)$$

- V_0 is occupied specific volume of atoms or molecules in the xline state *and* the spaces between them: ~ V_{XL} .
- V_F increases as T increases due to the difference in the thermal expansion coefficients (α_g vs α_l).

•
$$V_0(T) \approx V_{XL}(T) \quad \leftrightarrow \text{ can take } \alpha_g \approx \alpha_{XL}$$

•
$$V_F(T) = V_F(T_g) + (T - T_g) \frac{dV_F}{dT}$$
 $T > T_g$

• define <u>fractional free volume</u>, $f_{\underline{F}}$: $V_{\underline{f}}/V$

 $f_F(T) = f_F(T_g) + (T - T_g)\alpha_f$ $\alpha_f = \alpha_1 - \alpha_g$

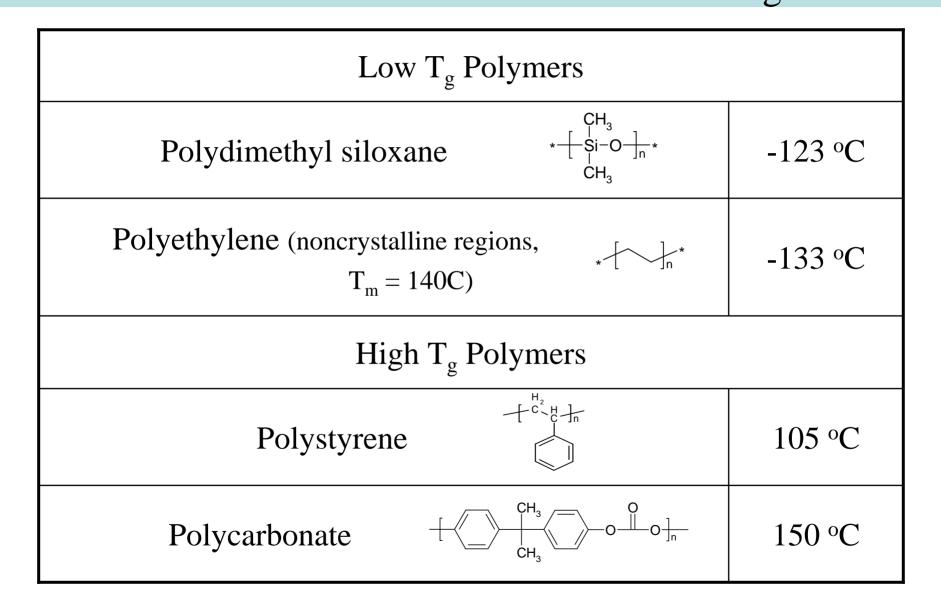
Viewpoint: T_g occurs when available free volume drops below critical threshold for structural rearrangement [VITRIFICATION POINT], *structure "jams up"*.

T_g Values of Amorphous Materials

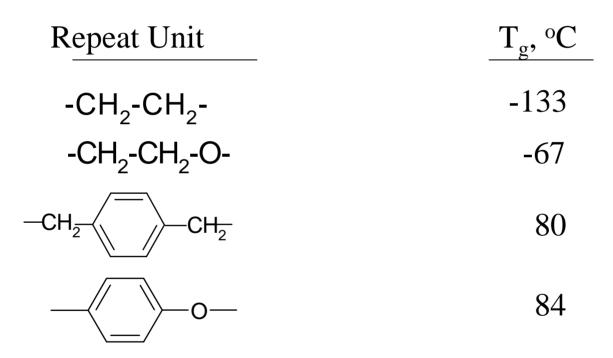
Table of representative amorphous solids, their bonding types, and their glass transition temperatures removed due to copyright restrictions.

See Table 2.2 in Allen, S. M., and E.L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999.

T_g for Selected Polymers


Glass Transition Temperature for Selected Polymers

Organic Polymer	$T_{\sigma}(^{o}C)$	Organic Polymer	$T_{\sigma}(^{o}C)$
Polyacenaphthalene	264	Polyhexamethylene sebacamide	
Polyvinyl pyrrolidone	175	(nylon 6,10)	40
Poly-o-vinyl benzyl alcohol	160	Polyvinyl acetate	29
Poly- <i>p</i> -vinyl benzyl alcohol	140	Polyperfluoropropylene	11
Polymethacrylonitrile	120	Polymethyl acrylate	9
Polyacrylic acid	106	Polyvinylidene chloride	-17
Polymethyl methacrylate	105	Polyvinyl fluoride	-20
Polyvinyl formal	105	Poly-1-butene	-25
Polystyrene	100	Polyvinylidene fluoride	-39
Polyacrylonitrile	96	Poly-1-hexene	-50
Polyvinyl chloride	87	Polychloroprene	-50
Polyvinyl alcohol	85	Polyvinyl- <i>n</i> -butyl ether	-52
Polyvinyl acetal	82	Polytetramethylene sebacate	-57
Polyvinyl proprional	72	Polybutylene oxide	-60
Polythylene terephthalate	69	Polypropylene oxide	-60
Polyvinyl isobutyral	56	Poly-1-octene	-65
Polycaprolactam (nylon 6)	50	Polyethylene adipate	-70
Polyhexamethylene adipamide		Polyisobutylene	-70
(nylon 6,6)	50	Natural rubber	-72
Polyvinyl butyral	49	Polyisoprene	-73
Polychlorotrifluorethylene	45	Polydimethyl siloxane	-85
Ethyl cellulose	43	Polydimethyl siloxane	-123


Effects of Chemical Structure on T_g

- Onset of molecular mobility at T_g involves rotation of chain segments (comprised of ~ 10-30 repeat units) about the main chain. Such cooperative motion requires
 - #1 sufficient thermal energy (kT relative to $\Delta V(\phi)$) for ease of rotation about main chain bonds and to overcome local bonding
 - #2 sufficient V_F for the segments to move into.
- Requirements for a low T_g polymer:
 - 1. weak interaction between chains
 - 2. easy rotation about main chain bonds $V(\phi)$
 - 3. abundant free volume V_F

Chemical Structure vs. T_g

Influence of Backbone Flexibility on T_g

T_g : Influence of Steric Hinderance and ε_{ij}

	-CH ₂ -CH- X	
• steric hinderance	$\mathbf{x} = $ side group	T _g , °C
	-CH ₃	-23
	-CH ₂ -CH ₃	-24
	-CH ₂ -CH(CH ₃) ₂	-16
	$-CH_2-CH_2-CH_3$	50
		100

• polar chain-chain interactions

-CI	81
-OH	85
-CN	97

Molecular Weight Dependence of T_g

Data show increase T_g with MW

Key Concept:

• Chain ends provide extra space and freedom for motion

$$T_g(\overline{M}_n) = T_g^{\infty} - \frac{c}{\overline{M}_n}$$

Image removed due to copyright restrictions.

Please see Fig. 3 in Fox, Thomas G., and Flory, Paul J. "Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight." *Journal of Applied Physics* 21 (June 1950): 581-591.

T_g for Random Copolymers and Miscible Blends

• Random copolymers and miscible 2 component blend systems are homogeneous single phased materials and one can assume the rule of mixtures for fractional free volume of each component. This leads to simple relationships for T_g

$$T_{g,co} = T_{g,A} W_A + T_{g,B} W_B$$

where w_i is the weight fraction of component i

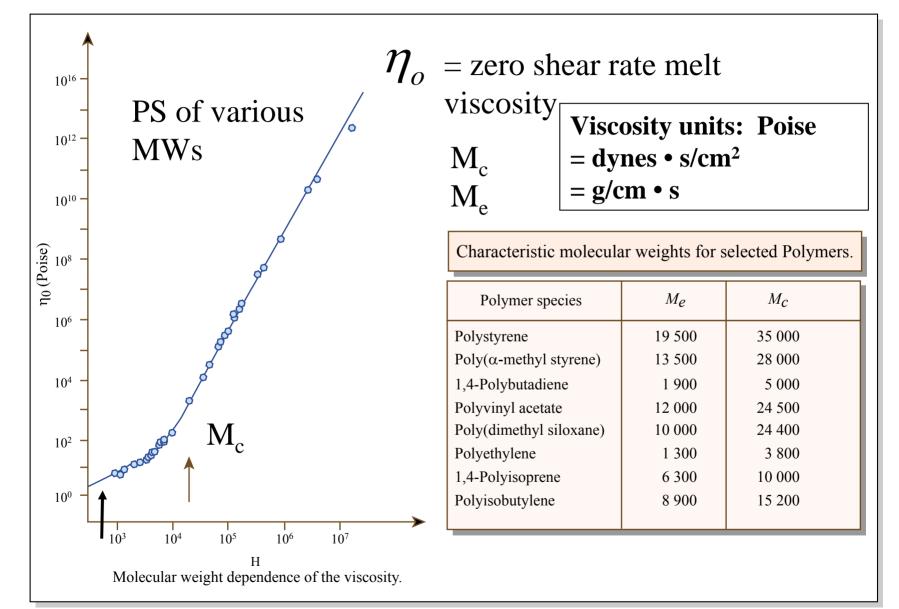
Controlling T_g with small molecule additives

Plasticizers

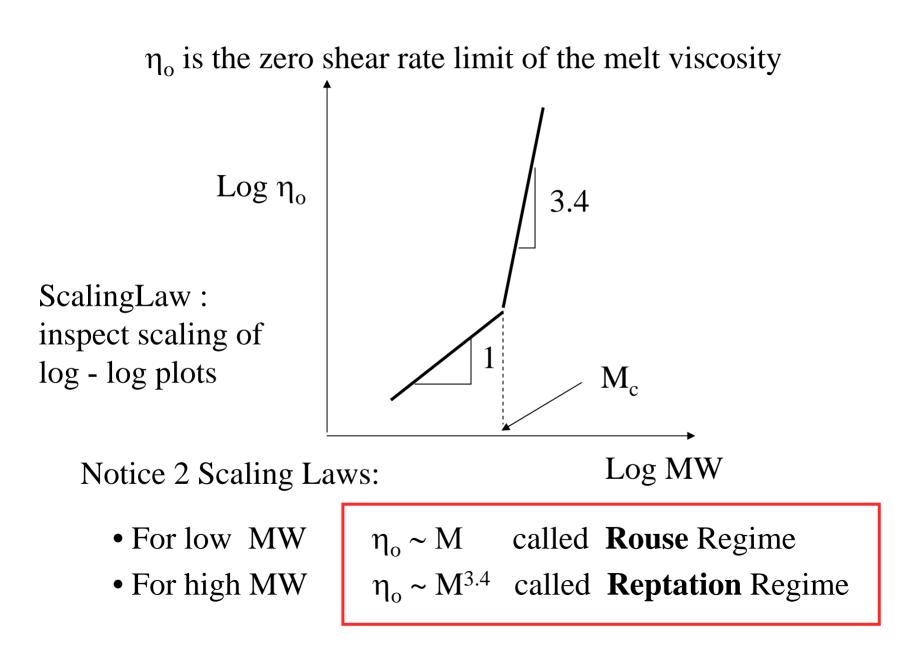
- low molar mass additives
- act to spread chains apart
- act as lubricant
 - 1) mediate chain-chain polar interactions
 - 2) add free volume
- Example: adding bis(2-ethylhexyl)phthalate (DOP) to neat PVC can significantly lower the Tg of the blend

$$(T_{g, PVC} = 70^{\circ}C, \quad T_{g, DOP} = -80^{\circ}C)$$

$$\downarrow^{o}_{C} \downarrow^{c}_{H_{2}C} \downarrow^{CH_{2}CH_{2}}_{CH_{2}CH_{2}} DOP$$


$$T_{g, blend} = T_{g, DOP} W_{DOP} + T_{g, PVC} W_{PVC}$$

Controlling T_g cont'd


Antiplasticizers

• Small molecule additives which "fit" into regions between chains, lowering the overall V_F and *raising* the T_g of the 2 component system

$\eta_o(M)$ behavior for polymer melts

Viscosity of Polymeric Melts

Diffusivity (and Viscosity) of Polymer Melts

- Center of mass motion is important in determining the diffusivity (and viscosity) of a polymer melt.
- Small Molecule Liquids –move by random jumps into adjacent "holes" (free volume concept) typical D(20 C) ~ 10⁻⁵ cm²/sec

• Polymeric Liquids

- D(20 C) ~ 10⁻¹⁴ to 10⁻¹⁸ cm²/sec
- 2 regimes of diffusivity vs molecular weight are observed. $D \sim M^{-1}$ and $D \sim M^{-2}$ (more scaling laws!)

More Scaling Laws - D(N) behavior

Example: PS melts of various MWs

Image removed due to copyright restrictions.

Please see Fig. 2 in Watanabe, Hiroshi, and Kotaka, Tadao. "Viscoelastic and Diffusion Properties of Binary Blends of Monodisperse Polystyrenes." *Macromolecules* 20 (1987): 530-535. Slope at lower MWs is about 1.0

Slope increases to ~ 2 for higher MWs

Rouse Chain Model

- Rouse chain = a flexible connected string of Brownian particles that interact with a featureless background viscous medium.
- The number of repeat units is less than the entanglement limit, the chain has small N, where $N < N_e$
- <u>Viscosity</u> depends on monomeric friction factor ξ_M and chain length x_2 $\eta \sim \xi_M \cdot x_2$ so $\eta \sim M^1$
 - **<u>Diffusivity</u>** depends on monomeric friction factor via Einstein

$$D = \frac{kT}{\xi}$$
 Hence, $D \sim M^{-1}$