Light Scattering

$\frac{K c_{2}}{\Delta R(\theta)}=\frac{1}{P(\theta)}\left[\frac{1}{\bar{M}_{w}}+2 A_{2} c_{2}+\ldots.\right]$

We will derive this. Note the nice set of variables...that we would like to be able to determine
$K=$ optical constants
$c_{2}=$ polymer concentration
$P(\theta)=$ particle scattering factor, known for various particle geometries
$A_{2}=\frac{\left(\frac{1}{2}-\chi\right)}{\rho_{2}{ }^{2} V_{1}}=2^{\text {nd }}$ virial coefficient
$\Delta R(\theta)=$ excess Raleigh ratio $=R_{\text {solution }}-R_{\text {solvent }} \quad \sim$ excess scattering intensity

	Scattering arises from...	
Light	$(\Delta \alpha)^{2}$	polarizability fluctuations
X-ray	$(\Delta \rho)^{2}$	electron density variations
Neutron	$(\Delta \mathrm{b})^{2}$	neutron scattering length variation

Scattering arises from Density Fluctuations

A dilute gas in vacuum

- Consider small particles:
- (situation:~ point scatterers)
$\mathrm{d}_{\mathrm{p}} \ll \lambda_{\text {radiation }}$
Particles
 Incident radiation

- Scattered Intensity at scattering angle θ to a detector r away from sample:

$$
I_{\theta}=\frac{I_{0} 8 \pi^{4}\left(1+\cos ^{2} \theta\right)}{\lambda^{4} r^{2}} \alpha^{2} \quad \begin{aligned}
& \alpha=\text { polarizability of molecule } \\
& I_{0}=\text { incident beam intensity }
\end{aligned}
$$

- For N particles in total volume V (assume dilute, so no coherent scattering)

$$
I_{\theta}^{\prime}=\frac{N}{V} I_{\theta} \quad \varepsilon=1+4 \pi\left(\frac{\mathrm{~N}}{\mathrm{~V}}\right) \alpha \quad \begin{aligned}
& \varepsilon=\text { dielectric constant } \\
& \varepsilon=\mathrm{n}^{2}, \varepsilon(\omega)=\text { frequency dependent }
\end{aligned}
$$

Fundamental relationship: index of refraction \longleftrightarrow polarizability

$$
n=\sqrt{1+4 \pi \frac{N}{V} \alpha}
$$

Can approximate

$$
\mathrm{n}_{\mathrm{gas}} \cong 1+\frac{\mathrm{dn}}{\mathrm{dc}} \mathrm{c}
$$

$\frac{\mathrm{dn}}{\mathrm{dc}}=$ refractive index increment
$\mathrm{c}=$ conc. of particles per unit volume

$$
\mathrm{n}_{\mathrm{gas}}^{2}=\left(1+\frac{\mathrm{dn}}{\mathrm{dc}} \mathrm{c}\right)^{2} \cong 1+2\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right) \mathrm{c}+\ldots
$$

$$
\underset{\text { Solving gives }}{\text { the polarizability }} \quad \alpha=\frac{1}{2 \pi} \frac{(d n / d c) c}{(N / V)}
$$

So by analogy for a polymer-solvent solution:

$$
n \cong n_{0}+\frac{d n}{d c_{2}} c_{2} \quad n^{2} \cong n_{0}^{2}+2 n_{0} \frac{d n}{d c_{2}} c_{2}
$$

Rayleigh and the Molecular Weight of Gases

$$
I_{\theta}^{\prime}=\left(\frac{N}{V}\right) \frac{8 \pi^{2}\left(1+\cos ^{2} \theta\right)}{\lambda^{4} r^{2}}\left(\frac{(d n / d c) c}{2 \pi(N / V)}\right)^{2}
$$

simplifying $\quad I_{\theta}^{\prime}=\frac{I_{0} 2 \pi^{2}\left(1+\cos ^{2} \theta\right)}{\lambda^{4} r^{2}(N / V)}\left(\frac{d n}{d c}\right)^{2} c^{2} \quad$ and since $\quad \frac{N}{V}=\frac{c}{M / N_{A V}}$
This expression contains several parameters dependent on scattering geometry, so we define Rayleigh Ratio, R as

$$
R=\frac{I_{\theta}^{\prime}}{I_{0}\left(1+\cos ^{2} \theta\right) / r^{2}}
$$

$$
\mathrm{R}=\frac{2 \pi^{2}\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right)^{2} \mathrm{M} \mathrm{c}}{\lambda^{4} \mathrm{~N}_{\mathrm{AV}}}
$$

Or just

$$
\mathrm{R}=\mathrm{K} \cdot \mathrm{M} \cdot \mathrm{c}
$$

Where K is a lumped optical constant

$$
K \equiv \frac{2 \pi^{2}\left(\frac{d n}{d c}\right)^{2}}{\lambda^{4} N_{A V}}
$$

Note, for polymer-solvent solution:

$$
K \equiv \frac{2 \pi^{2} n_{0}^{2}\left(\frac{d n}{d c_{2}}\right)^{2}}{\lambda^{4} N_{A V}}
$$

Rayleigh measured the molecular weight of gas molecules using light scattering!

Scattering from Fluctuations II

Debye: Re-identify fluctuations as chains in a solvent and extend

A dilute "gas" of polymer chains in solution

coil/solvent
$\mathrm{V}_{\text {solution }}$

Now for polymer coils: $\quad \lambda \sim d_{p}$

Recognize 4 features in a binary component system:

1. Each cell has on average, the same number of solvent molecules but there are variations. Fluctuations in solvent density will give rise to some (weak) scattering (subtract off pure solvent scattering).
2. Fluctuations in the number of solute molecules (chains) will give rise to significant scattering
3. Fluctuations in the concentration of solute create osmotic forces
4. Polymer chains are large and cannot treat them as point scatterers

$$
P(\theta) \neq 1
$$

The Features of Excess Scattering

- Feature 1.

Define $\Delta R=R_{\text {solution }}-R_{\text {pure solvent }}=$ "Excess Rayleigh Ratio"

- Feature 2.

Remaining scattering arises from fluctuations in solute concentration
$I_{\theta}^{\prime}=\frac{I_{0} 2 \pi^{2}\left(1+\cos ^{2} \theta\right)}{\lambda^{4} r^{2}(N / V)}\left(\frac{d n}{d c}\right)^{2} c^{2}$
$\Delta \mathrm{R}$ depends on $\left(\frac{\mathrm{dn}}{\mathrm{dc}_{2}}\right)^{2}$ and $\left\langle\left(\delta \mathrm{c}_{2}\right)^{2}\right\rangle$
Einstein-Smoluchowski mean squared concentration fluctuation per unit vol.

$$
\left\langle\left(\delta c_{2}\right)^{2}\right\rangle=\frac{R T c_{2}}{\delta V N_{A V}\left(\partial \pi / \partial c_{2}\right)}
$$

- Feature 3.

A local osmotic pressure will arise due to local concentration differences, this effect acts to suppress solute concentration fluctuations. Note in the gas-vacuum system, such an effect is not present.

$$
\begin{aligned}
& \frac{\pi}{c_{2}}=R T\left[\frac{1}{M}+\frac{\left(\frac{1}{2}-\chi\right)}{V_{1} \rho_{2}^{2}} c_{2}+\cdots\right] \\
& \frac{\partial \pi}{\partial \mathrm{c}_{2}}=\mathrm{RT}\left[\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}_{2}+\cdots\right]
\end{aligned}
$$

Feature 3 cont'd

$$
\mathrm{R}_{\text {solution }}-\mathrm{R}_{\text {solvent }}=\frac{2 \pi^{2} \mathrm{n}_{0}^{2}\left(\frac{\mathrm{dn}}{\mathrm{dc}_{2}}\right)^{2} \mathrm{c}_{2}}{\lambda^{4} \mathrm{~N}_{\mathrm{AV}}\left[\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}_{2}+\cdots\right]}
$$

Polymer in solution

$$
\Delta R=K c_{2}\left[\frac{1}{\left(\frac{1}{M}+2 A_{2} c_{2}+\cdots\right)}\right]
$$

ΔR similar to the Rayleigh scattering for gases but with a new term depending A_{2}

Scattering from Polymer Solutions

- Feature 4.

Polymer chains are large and can not be assumed as point scatterers for visible light

- $\lambda \sim 6,328 \AA$ He-Ne laser
- Coil size ~ typically $100-1000 \AA$ depending on molecular weight of polymer Therefore need to consider self-interference of monomers in polymer coil on scattered intensity
- Therefore $\mathrm{P}(\theta)$ term is important

Scattering of Polymer Solutions

Introduce finite size chain scattering factor $\mathrm{P}(\theta)$

$$
\Delta R=K c_{2} \frac{1}{\left(\frac{1}{\bar{M}_{w}}+2 A_{2} c_{2}+\cdots\right)} P(\theta)
$$

For a Gaussian coil $P(\theta) \equiv \frac{2}{u^{2}}\left(u-1+e^{-u}\right) \quad$ (Debye, 1939)
where

$$
u=\left[\frac{4 \pi n_{0}}{\lambda} \sin \left(\frac{\theta}{2}\right)\right]^{2}\left\langle R_{g}^{2}\right\rangle
$$

$\mathrm{q}=$ scattering vector,

$$
u=q^{2}\left\langle R_{g}^{2}\right\rangle
$$

In the limit of very small θ,

$$
\mathrm{P}(\theta=>0)=1
$$

Useful approximation for small, nonzero θ

$$
P(\theta) \approx 1-\frac{u}{3} \text { and } \frac{1}{P(\theta)} \approx 1+\frac{u}{3} \text { for } u^{1 / 2} \ll 1
$$

Scattering in a Polymer-Solvent System

- In general, $P(\theta) \neq 1, c_{2} \neq 0, \quad A_{2} \neq 0$ therefore rewrite excess Rayleigh ratio as

$$
\frac{\mathrm{Kc}_{2}}{\Delta \mathrm{R}}=\left[\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}_{2}+\cdots\right]\left[1+\frac{\mathrm{u}}{3}\right] \quad u=q^{2}\left\langle R_{g}{ }^{2}\right\rangle
$$

$$
\left.\frac{K c_{2}}{\Delta R}=\left[\frac{1}{M}+2 A_{2} c_{2}+\cdots\right] 1+\frac{16 \pi^{2} n_{0}^{2}}{3 \lambda^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\left\langle R_{g}^{2}\right\rangle\right]
$$

Equation is valid for dilute solutions and scattering angles θ such that

$$
u^{1 / 2} \ll 1
$$

Next: how to plot scattered intensity vs. c_{2} and versus q^{2} to extract M and A_{2}

Zimm Plot - Analysis of Light Scattering Data

Light Scattering Experiment

Note: $\frac{K c_{2}}{\Delta R_{0}}$ is a function of 2 variables, c_{2} and θ.
ΔR_{θ}
Zimm's cool idea was to plot $\mathrm{y}(\mathrm{p}, \mathrm{q}) v s(\mathrm{p}+\mathrm{q})$ to separate out dependence on each variable: called Zimm plot

Construction of a Zimm Plot

The Master Equation:

$$
\frac{K c_{2}}{\Delta R}=\left(\frac{1}{\bar{M}_{w}}+2 A_{2} c_{2}+\ldots\right)\left(1+\frac{16 \pi^{2} n_{0}^{2} \sin ^{2} \frac{\theta}{2}}{3 \lambda^{2}}\left\langle R_{g}{ }^{2}\right\rangle\right)
$$

do double extrapolation:

$$
\begin{array}{ll}
\theta \rightarrow 0^{\circ} & \mathrm{A}_{2} \quad \& \quad \overline{\mathrm{M}}_{\mathrm{w}} \\
\mathrm{c}_{2} \rightarrow 0
\end{array} \quad<\mathrm{R}_{\mathrm{g}}^{2>} \& \overline{\mathrm{M}}_{\mathrm{w}}^{2>}
$$

Zimm Plot Sample Data Set

	$\frac{K c_{2}}{\Delta R\left(\theta_{i}, c_{i}\right)}$	θ										
		30°	37.5°	45°	60°	75°	90°	105 ${ }^{\circ}$	120°	135 ${ }^{\circ}$	142.5°	150°
	2×10^{-3}	3.18	3.26	3.25	3.45	3.56	3.72	3.78	4.01	4.16	4.21	4.22
	1.5×10^{-3}	2.73	2.76	2.81	2.94	3.08	3.27	3.4	3.57	3.72	3.75	3.78
C_{2}	1×10^{-3}	2.29	2.33	2.37	2.53	2.66	2.85	2.96	3.12	3.29	3.38	3.37
	0.75×10^{-3}	2.10	2.14	2.17	2.32	2.47	2.64	2.79	2.93	3.10	3.21	3.2
	0.5×10^{-3}	1.92	1.95	1.98	2.16	2.33	2.51	2.66	2.79	2.96	3.11	3.12

$$
\begin{array}{lrl}
K=\frac{2 \pi^{2} n_{0}{ }^{2}\left(\frac{d n}{d c}\right)^{2}}{\lambda^{4} N_{A V}} & \begin{aligned}
\text { For } \mathrm{c}_{2} & =0.002, \\
\theta & =30
\end{aligned} & \frac{K c_{2}}{\Delta R\left(\theta_{i}, c_{i}\right)}=3.18 \\
n_{0} & =1.5014 & \\
d n / d c=0.106 \mathrm{~cm}^{3} \mathrm{~g}^{-1} & & N_{A V}=5.461 \times 10^{-5} \mathrm{~cm} \\
& &
\end{array}
$$

Plotting the Data

$K C_{2} \quad$ Image removed due to copyright restrictions.
ΔR_{θ}
Please see, for example,
http://web.umr.edu/~WLF/MW/orangeline.gif, from http://web.umr.edu/~WLF/MW/Zimm.html

Plot typical data point :

$$
\theta=30^{\circ}, c_{2}=2 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}
$$

1

- These points are determined
y-axis: $\frac{K c_{2}}{\Delta R_{\theta}}=3.18$

$$
\begin{aligned}
\text { X-axis: } & \sin ^{2}\left(\frac{30^{\circ}}{2}\right)+k\left(2 \times 10^{-3}\right) \\
= & 0.067+100\left(2 \times 10^{-3}\right)=0.267
\end{aligned}
$$

Pick constant to "spread" the plot

Plotting the data cont'd

Extrapolating to zero scattering angle...

Image removed due to copyright restrictions.
Please see, for example,
http://web.umr.edu/~WLF/MW/yellowline.gif, from http://web.umr.edu/~WLF/MW/Zimm.html

Extrapolate the extrapolated data to obtain:

\bar{M}_{w}, A_{2}

Image removed due to copyright restrictions.
Please see, for example,
http://web.umr.edu/~WLF/MW/first.gif, from http://web.umr.edu/~WLF/MW/Zimm.html

An example: $\quad A_{2},\left\langle R_{g}{ }^{2}\right\rangle$ and $\quad M_{W}$

Figure by MIT OCW.

getting $A_{2},\left\langle\mathrm{R}_{\mathrm{g}}{ }^{2}\right\rangle$ and \bar{M}_{w}

$$
\begin{align*}
& \quad<r^{2}>\quad=6<R_{g}{ }^{2}> \tag{i}\\
& \quad=6\left(2.33 \times 10^{-11} \mathrm{~cm}^{2}\right) \\
& \quad=1.40 \times 10^{-10} \mathrm{~cm}^{2} \\
& \left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}=1.182 \times 10^{-5} \mathrm{~cm}=1,182 \mathrm{~A}
\end{align*}
$$

Pretty big molecules!
(ii) Now consider the $\theta=0$ line. At $\theta=0$ (neglecting higher order c_{2} terms)

$$
\begin{gathered}
\frac{\mathrm{Kc}_{2}}{\Delta \mathrm{R}_{\theta}}=\frac{1}{\overline{\mathrm{M}}_{\mathrm{w}}}+2 \mathrm{~A}_{2} \mathrm{c}_{2} \\
\text { slope }=2 \mathrm{~A}_{2}
\end{gathered}
$$

The density of polystyrene $\left(\rho_{2}\right)$ is $1.05 \mathrm{~g} / \mathrm{cm}^{3}$. The molar volume of benzene $\mathrm{V}_{1}=\mathrm{MW} / \rho_{1}$. The molecular weight of benzene is $78.11 \mathrm{~g} /$ mole and its density is $0.8787 \mathrm{~g} / \mathrm{cm}^{3}$ (from CRC Handbook of Chemistry and Physics).
from the Zimm plot

$$
\begin{gathered}
\text { slope }=\frac{1.25 \times 10^{-6} \mathrm{~mole} / \mathrm{g}}{0.1375 \times 10^{-2} \mathrm{~g} / \mathrm{cm}^{3}}=9.09 \times 10^{-4} \frac{\mathrm{~mole} \cdot \mathrm{~cm}^{3}}{\mathrm{~g}^{2}}=2 \mathrm{~A}_{2} \\
\mathrm{~A}_{2}=4.55 \times 10^{-4} \frac{\mathrm{~mole} \cdot \mathrm{~cm}^{3}}{\mathrm{~g}^{2}}
\end{gathered}
$$

$\mathrm{A}_{2},\left\langle\mathrm{R}_{\mathrm{g}}{ }^{2}\right\rangle$ and $\overline{\mathrm{M}}_{\mathrm{W}}$

(ii) The relationship between A_{2} and χ is given by:

$$
\chi=\frac{1}{2}-\mathrm{A}_{2} \mathrm{~V}_{1} \rho_{2}^{2}
$$

Substituting the values,

$$
\chi=\frac{1}{2}-\left(4.55 \times 10^{-4} \frac{\text { mole } \mathrm{cm}^{3}}{g^{2}}\right)\left(\frac{78.11 \mathrm{~g} / \text { mole }}{0.8787 \mathrm{~g} / \mathrm{cm}^{3}}\right)\left(1.05 \mathrm{~g} / \mathrm{cm}^{3}\right)^{2}
$$

$$
\chi=0.455
$$

(So, of course, the polymer solution used for light scattering will be a single phase since $\chi<1 / 2$ for miscibility of solvent and polymer).

Noncrystalline Materials

- The structure of noncrystalline materials (i.e. polymer glasses, amorphous polymer melts) is characterized by short range order (SRO)
- SRO - develops due to excluded volume and locally dense packing (glasses ~ are only 10\% less dense than crystals)
- Pair distribution function $g(r)$ is a dimensionless function used to quantify SRO. In polymers SRO is primarily due to covalent intra-molecular bonds and neighboring intermolecular packing.
- Properties of noncrystalline polymers are heavily influenced by τ^{*}, the characteristic relaxation time relative to an experimental observation time, t .
liquid (melt)
rubbery
glassy
$t>\tau^{*}$
$\mathrm{t} \leq \tau^{*}$
$t \ll \tau^{*}$

Structural Features of Noncrystalline Polymers

SRO in Polymers

- Due to covalent intra-molecular bonds

$$
\left.\begin{array}{l}
\mathrm{C}_{1}-\mathrm{C}_{2}=\text { constant } \\
\mathrm{C}_{1}-\mathrm{C}_{3}=\text { constant } \\
\mathrm{C}_{1}-\mathrm{C}_{4}=\text { varies }
\end{array}\right\} \text { gives rise to peaks at large } \mathrm{q}
$$

- Due to chain-chain inter-chain distances $\sim 5 \AA \AA$
$C_{1}-C_{1}^{\prime} \sim 5 \AA$

Typical X-ray signature of noncrystalline materials broad overlapping peaks from multiple distances:

Pair Distribution Function g(r)

Figure by MIT OCW.
The Pair Distribution Function $g(r)$ addresses the distances between the centers of mass of pairs of units. Since glasses and liquids are isotropic, the magnitude of the inter-unit distance is of interest.
The scalar distance $r_{i j}$ between molecule i and molecule j is:

$$
r_{i j}=\left|r_{i}-r_{j}\right|
$$

$g(r)$ contid

- $r_{i j}=\left|r_{i}-r_{j}\right|$
- Characterize the set of distances $\left\{r_{i j}\right\}$ from an average unit i to every other unit $j=1$..... N.
- $g(r)$ counts the number of units $d n$ in a small spherical shell sampling volume element of size $d v$ at each distance r from a reference unit, $d v=4 \pi r^{2} d r$
- The statistical average of these numbers for many units chosen as the reference is divided by the average unit density $\langle\rho\rangle$

Figure showing the pair-distribution functions for gas, liquid or glass, and monatomic crystal removed due to copyright restrictions.

See Figure 2.5 in Allen, S. M., and E.L. Thomas. The Structure of Materials. New York, NY: J. Wiley \& Sons, 1999.

$$
g(r)=\frac{1}{\langle\rho\rangle} \frac{d n(r, r+d r)}{d v(r, r+d r)}
$$

Features of $g(r)$ in Glasses \& Liquids

At several unit diameters, the average number of units/vol. becomes constant

Figure by MIT OpenCourseWare.

- Due to excluded volume, $\mathrm{g}(\mathrm{r})=0$ for distances less than $2 R_{o}$
- Liquids and glasses are strongly correlated at the shortest distance between 2 units, the maximum occurs at slightly $>2 R_{o}$, this largest peak is the average distance to the first shell to the nearest-neighbor unit.

$$
\begin{aligned}
& \mathrm{g}(\mathrm{r})_{\text {intra }} \\
& \mathrm{g}(\mathrm{r})_{\text {inter }}
\end{aligned}
$$

Superposed correlations

