Example V($\phi)$:
 Rotational conformations of n-butane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Gauche

Planar

Gauche

Planar trans conformer is lowest energy

Views along the C2-C3 bond

High energy states
$\mathrm{V}(\phi)$

Conformers: Rotational Isomeric State Model

- Rotational Potential
- Probability of rotation angle phi

V (ϕ)

$$
\mathrm{P}(\phi) \sim \exp (-\mathrm{V}(\phi) / \mathrm{kT})
$$

- Rotational Isomeric State (RIS) Model
- e.g. Typical 3 state model $: \mathrm{g}^{-}, \mathrm{t}, \mathrm{g}^{+}$with weighted probabilities
- \quad Again need to evaluate $l_{i} \cdot l_{j+1}$ taking into account probability of a ϕ
rotation between adjacent bonds
- This results in a bond angle rotation factor of $\frac{1+\langle\cos \phi\rangle}{1-\langle\cos \phi\rangle}$
combining
where

$$
\left\langle r^{2}\right\rangle=n l^{2}\left(\left(\frac{1-\cos \theta}{1+\cos \theta}\right)\left(\frac{1+\langle\cos \phi\rangle}{1-\langle\cos \phi\rangle}\right)\right)=n l^{2} C_{\infty}
$$

$$
\begin{aligned}
& C_{\infty}=\left(\left(\frac{1-\cos \theta}{1+\cos \theta}\right)\left(\frac{1+\langle\cos \phi\rangle}{1-\langle\cos \phi\rangle}\right)\right) \quad \begin{array}{l}
\text { The so called "Characteristic ratio" } \\
\text { and is compiled for various polymers }
\end{array} \\
& \langle\cos \phi\rangle=\frac{\int \cos (\phi) P(\phi) d \phi}{\int P(\phi) d \phi} \quad \text { with } \mathrm{P}(\phi)=\exp (-\mathrm{V}(\phi) / \mathrm{kT})
\end{aligned}
$$

The Chemist's Real Chain

- Preferred bond angles and rotation angles:
- $\quad \theta, \phi$. Specific bond angle θ between mainchain atoms (e.g. C-C bonds) with rotation angle chosen to avoid short range intra-chain interferences. In general, this is called "steric hindrance" and depends strongly on size/shape of set of pendant atoms to the main backbone ($\mathrm{F}, \mathrm{CH}_{3}$, phenyl etc).
- Excluded volume: self-crossing of chain is prohibited (unlike in diffusion or in the mathematician's chain model): Such excluded volume contacts tend to occur between more remote segments of the chain. The set of allowed conformations thus excludes those where the path crosses and this forces $\left\langle r_{l, n}{ }^{2}\right\rangle^{1 / 2}$ to increase.
- Solvent quality: competition between the interactions of chain segments (monomers) with each other vs. solvent-solvent interactions vs. the interaction between the chain segments with solvent. Chain can expand or contract.
- monomer - monomer
- solvent - solvent
- monomer - solvent

$$
\varepsilon_{\mathrm{M}-\mathrm{M}} \text { VS. } \varepsilon_{\mathrm{S}-\mathrm{S}} \text { VS. } \varepsilon_{\mathrm{M}-\mathrm{S}}
$$

Excluded Volume

- The excluded volume of a particle is that volume for which the center of mass of a 2nd particle is excluded from entering.
- Example: interacting hard spheres of radius a
- volume of region denied to sphere A due to presence of sphere B
$-\mathrm{V}=4 / 3 \pi(2 \mathrm{a})^{3}=8 \mathrm{~V}_{\text {sphere }}$
but the excluded volume is shared by 2 spheres so

$$
V_{\text {excluded }}=4 V_{\text {sphere }}
$$

Solvent Quality and Chain Dimensions

Theta θ Solvent

Figure by MIT OCW.

- Solvent quality:
- M-M, S-S, M-S interactions: $\varepsilon_{\mathrm{M}-\mathrm{M}}, \varepsilon_{\mathrm{S}-\mathrm{S}}, \varepsilon_{\mathrm{M}-\mathrm{S}}$

Physicist's Universal Chain

- Recover random walk relation for real chain at theta condition (or in melt state!) by redefining a coarse grained model of N Kuhn steps

Manipulating $\left\{r_{1 n}\right\}$

To increase end to end distance

- Excluded Volume (bigger, bulkier monomers)
- Large bond angle and strong steric interactions tend to favor all trans conformation $\quad=>\mathbf{C}_{\infty}$ large

To increase or decrease end to end distance

- Solvent quality
- Temperature (affects solvent quality and relative interaction energies)
- Deformation (stretch the coil: rubber elastic behavior)

Characteristic Ratio

Experimentally measure MW and hence chain dimensions
(technique: laser light scattering: Zimm plot) in a theta solvent for high MW sample

Influence of steric interactions on characteristic ratio

$$
C_{\infty}=\frac{\left\langle r^{2}\right\rangle_{\theta}}{n l^{2}}
$$

Summary: Flexible Coil Chain Dimensions

Model	$<r^{2}>$	Comments
Mathematician's Ideal RW	$<\mathrm{r}^{2}>=\mathrm{n} \mathrm{l}^{2}$	Freely jointed chain, n bonds each of \qquad length 1.
Chemist's Real Chain θ fixed, $\text { V(} \phi \text {)-RIS }$ Real Chain $\theta, \mathrm{V}(\phi)$ - and solvent quality and excluded volume	$\begin{aligned} & \left\langle r^{2}\right\rangle=n l^{2}\left(\left(\frac{1-\cos \theta}{1+\cos \theta}\right)\left(\frac{1+\overline{+\overline{\cos \phi}}}{1-\overline{\cos \phi}}\right)\right) \\ & \left\langle r^{2}\right\rangle_{\theta}=n l^{2} C_{\infty} \end{aligned}$ $\left\langle r^{2}\right\rangle=n l^{2} \mathrm{C}_{\infty} \alpha^{2}$	Allow preferred bond angles and preferred rotation angles about main chain bonds Characteristic ratio takes into account all local steric interactions Factor α takes into account solvent quality and long range chain self-intersections (excluded valume) $\alpha^{2}=\frac{\left\langle\boldsymbol{r}^{2}\right\rangle}{\left\langle\boldsymbol{r}^{2}\right\rangle_{\theta}}$: $\alpha=1$ for two states: (i) Theta condition - particular solvent and temperature (ii) Melt state
Physicist's Universal Chain ($\alpha=1$ conditions)	$\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{Nb}^{2}$ where $\mathrm{N}=\#$ of statistical segments, $\mathrm{b}=\text { statistical segment length, } \mathrm{b}=\mathrm{C}_{\infty} l$	C_{∞} is incorporated into Kuhn length b .

Thermodynamics of Polymer Solutions

- Bragg-Williams Lattice Theory for Phase Behavior of Binary Alloys
W. L. Bragg and E. J. Williams, Proc. Roy. Soc. A145, 699 (1934); ibid A151, 540 (1935).
- Generalize to polymer-polymer and polymer-solvent phase behavior. P. J. Flory, J. Chem Phys. 10, 51 (1942), M. L. Huggins, J. Phys. Chem. 46, 151 (1942).

Chapter 3, Young and Lovell

$$
\begin{aligned}
& G=H-T S \\
& \Delta G=G_{1,2}-\left(G_{1}+G_{2}\right)
\end{aligned}
$$

Binary Component System in State 2

Figure by MIT OCW. solvent-solvent solvent-polymer
polymer-polymer Materials scientists already familiar with B-W Lattice Theory !

Thermodynamics of Polymer Sol'n cont'd

$$
\begin{aligned}
& \begin{array}{l}
G=H-T S \\
\Delta G=G_{1,2}-\left(G_{1}+G_{2}\right)
\end{array} \\
& \hline 1 \\
& \text { STATE } 1
\end{aligned} \xrightarrow[\text { MIX }]{\begin{array}{|c||c|}
\hline 1,2 \\
\text { STATE 2 }
\end{array}}
$$

- State 1-2 pure phases comprised of n_{i} moles of component i

If component is a polymer, it has X_{i} segments and each segment has volume v_{i}

$$
V_{1}=n_{1} x_{1} V_{1} \quad V_{2}=n_{2} x_{2} v_{2}
$$

- State 2 - mixed phase,
assume

$$
V=n_{1} x_{1} v_{1}+n_{2} x_{2} v_{2} \quad \Delta V_{1,2}=0
$$

Thermodynamics cont'd - Entropy

1. Translational - (sometimes called combinatorial or configurational) due to the number of distinguishable spatial arrangements
2. Conformational - due to number of distinguishable shapes of a given molecule keeping center of mass fixed. We will assume that there are no differences in molecular conformations in the unmixed vs. mixed state.
3. Recall $S=k \ln \Omega \quad \Delta S=k \ln \Omega_{1,2}-k\left(\ln \Omega_{1}+\ln \Omega_{2}\right)$
4. $\Omega_{1}=1, \Omega_{2}=1 \quad$ since there is only 1 way to arrange a pure component in its volume

- The increase in translational entropy is due to the increased total volume available to the molecules in the mixed state. The statistical mechanics is standard for mixing of 2 gases:

$$
\Delta S_{m}=k \ln \Omega_{1,2}-0
$$

$$
\Delta S_{m}=k\left(n_{1} \ln V / V_{1}+n_{2} \ln V / V_{2}\right)
$$

Mean Field Lattice Theory

- Mean field: the interactions between molecules are assumed to be due to the interaction of a given molecule and an average field due to all the other molecules in the system. To aid in modeling, the solution is imagined to be divided into a set of cells within which molecules or parts of molecules can be placed (lattice theory).
- The total volume, V , is divided into a lattice of N_{o} cells, each cell of volume v . The molecules occupy the sites randomly according to a probability based on their respective volume fractions. To model a polymer chain, one occupies x_{i} adjacent cells.

$$
\begin{aligned}
N_{o} & =N_{1}+N_{2}=n_{1} x_{1}+n_{2} x_{2} \\
V & =N_{o} v
\end{aligned}
$$

- Following the standard treatment for small molecules $\left(\mathrm{x}_{1}=\mathrm{x}_{2}=1\right)$

$$
\Omega_{1,2}=\frac{N_{0}!}{N_{1}!N_{2}!}
$$

using Stirling's approximation:

$$
\ln M!=M \ln M-M \quad \text { for } M \gg 1
$$

$$
\Delta S_{m}=k\left(-N_{1} \ln \phi_{1}-N_{2} \ln \phi_{2}\right)
$$

$$
\phi_{1=?}
$$

Entropy Change on Mixing $\Delta \mathrm{S}_{\mathrm{m}}$ is :

$$
\frac{\Delta S_{m}}{N_{o}}=+k\left(-\phi_{1} \ln \phi_{1}-\phi_{2} \ln \phi_{2}\right)
$$

Remember this is for small molecules $\mathrm{x}_{1}=\mathrm{x}_{2}=1$

Note the symmetry

The entropic contribution to $\Delta \mathrm{G}_{\mathrm{m}}$ is thus seen to always favor mixing if the random mixing approximation is used.

Enthalpy of Mixing $\Delta \mathrm{H}_{\mathrm{m}}$

- Assume lattice has z nearest-neighbor cells.
- To calculate the enthalpic interactions we consider the number of pairwise interactions. The probability of finding adjacent cells filled by component i, and j is given by assuming the probability that a given cell is occupied by species i is equal to the volume fraction of that species: ϕ_{i}.

$\Delta \mathrm{H}_{\mathrm{m}}$ contd

$$
\begin{array}{cl}
v_{i j}=\# \text { of i,j interactions } \\
v_{12}=N_{1} z \phi_{2} \\
v_{11}=N_{1} z \phi_{1} / 2 \\
v_{22}=N_{2} z \phi_{2} / 2 \\
& H_{1,2}=v_{12} \varepsilon_{12}+v_{11} \varepsilon_{11}+U_{22} \varepsilon_{22} \\
H_{1,2}=z N_{1} \phi_{2} \varepsilon_{12}+\frac{z}{2} N_{1} \phi_{1} \varepsilon_{11}+\frac{Z}{2} N_{2} \phi_{2} \varepsilon_{22} \\
\begin{array}{c}
\text { Mixed state enthalpic } \\
\text { interactions }
\end{array} \\
\begin{array}{c}
\text { Pure state enthalpic } \\
\text { interactions }
\end{array} & H_{1}=\frac{z N_{1}}{2} \varepsilon_{11} \quad H_{2}=\frac{z N_{2}}{2} \varepsilon_{22} \\
& \Delta H_{M}=z\left[N_{1} \phi_{2} \varepsilon_{12}+\frac{N_{1} \varepsilon_{11}}{2}\left(\phi_{1}-1\right)+\frac{N_{2} \varepsilon_{22}}{2}\left(\phi_{2}-1\right)\right] \\
& N_{1}+N_{2}=N_{0} \\
\text { recall } & \Delta H_{M}=z N_{0}\left[\varepsilon_{12}-\frac{1}{2}\left(\varepsilon_{11}+\varepsilon_{22}\right)\right] \phi_{1} \phi_{2} \quad \text { Note the symmetry }
\end{array}
$$

χ Parameter

- Define χ :

$$
\chi=\frac{z}{k T}\left[\varepsilon_{12}-\frac{1}{2}\left(\varepsilon_{11}+\varepsilon_{22}\right)\right]
$$

χ represents the chemical interaction between the components

$$
\frac{\Delta H_{M}}{N_{0}}=k T \chi \phi_{1} \phi_{2}
$$

- $\Delta \mathrm{G}_{\mathrm{M}}: \quad \Delta G_{M}=\Delta H_{M}-T \Delta S_{M}$

$$
\begin{aligned}
\frac{\Delta G_{M}}{N_{0}} & =k T \chi \phi_{1} \phi_{2}-k T\left[-\phi_{1} \ln \phi_{1}-\phi_{2} \ln \phi_{2}\right] \\
\frac{\Delta G_{M}}{N_{0}} & =k T\left[\chi \phi_{1} \phi_{2}+\phi_{1} \ln \phi_{1}+\phi_{2} \ln \phi_{2}\right]
\end{aligned}
$$

Note: $\Delta \mathrm{G}_{\mathrm{M}}$ is symmetric in ϕ_{1} and ϕ_{2}.
This is the Bragg-Williams result for the change in free energy for the mixing of binary metal alloys.

$\Delta \mathrm{G}_{\mathrm{M}}(\mathrm{T}, \phi, \chi)$

- Flory showed how to pack chains onto a lattice and correctly evaluate $\Omega_{1,2}$ for polymer-solvent and polymer-polymer systems. Flory made a complex derivation but got a very simple and intuitive result, namely that $\Delta \mathrm{S}_{\mathrm{M}}$ is decreased by factor ($1 / x$) due to connectivity of x segments into a single molecule:

$$
\frac{\Delta S_{M}}{N_{0}}=-k\left[\frac{\phi_{1}}{x_{1}} \ln \phi_{1}+\frac{\phi_{2}}{x_{2}} \ln \phi_{2}\right]
$$

- Systems of Interest
- solvent - solvent $\quad x_{1}=x_{2}=1$
- solvent - polymer $\quad x_{1}=1 \quad x_{2}=$ large
- polymer - polymer $\quad x_{1}=$ large,$\quad x_{2}=$ large

$$
\begin{aligned}
\frac{\Delta G_{M}}{N_{0}} & =k T\left[\chi \phi_{1} \phi_{2}+\frac{\phi_{1}}{x_{1}} \ln \phi_{1}+\frac{\phi_{2}}{x_{2}} \ln \phi_{2}\right] \\
\chi & =\frac{Z}{k T}\left[\varepsilon_{12}-\frac{1}{2}\left(\varepsilon_{11}+\varepsilon_{22}\right)\right]
\end{aligned}
$$

Need to examine variation of $\Delta \mathrm{G}_{\mathrm{M}}$ with $\mathrm{T}, \chi, \phi_{\mathrm{i}}$, and x_{i} to determine phase behavior.

Note possible huge
asymmetry in $\mathrm{x}_{1}, \mathrm{x}_{2}$

