Electronic Polymers

Polyacetylene $\sigma = 10^4$ -10⁵ S/cm

Polyaniline σ= 10²-10³ S/cm

Poly(p-phenylene vinylene) $\sigma = 10^3 - 10^4$ S/cm

 $\frac{Polythiophene}{\sigma = 10^3 - 10^4 \text{ S/cm}}$

 σ ranges 10⁻²⁰ to 10²⁰

Requires doping (oxidation or reduction) for conductivity

Electrical Properties

Figure by MIT OCW.

$$\sigma = n\mu q$$

Electric conductivity of inorganic (I) and organic (O) compounds, measured in S/cm. Triniobium germanide (Nb₃Ge) and poly(thiazyl) (SN)_n are superconducting materials at very low temperatures near zero kelvin. The conductivities for conducting (C), semi-conducting (SC) and insulating (I) compounds are given for 20°C (= 293.16 K = 68°F). Cu = Copper, Hg = mercury, Ge = germanium, Si = silicon, AgBr = silver bromide, G = glass, S = sulfur, (SiO₂)_n= quartz, TTF = tetrathiafulvalene, TCNQ = 7,7,8,8 tetracyanoquinodimethane, NBR = nitrile rubber (a copolymer from acrylonitrile and butadiene), DNA = deoxyribonucleic acid, PVC = polyvinyl chloride, PE = polyethylene, PTFE = polytetrafluoroethylene.

1 Siemens = 1 Ohm^{-1}

10⁴⁰ change in material property !

Material	Conductivity (S/cm)			
Insulators	$\sigma < 10^{-7}$			
Semiconductors	$10^{-7} < \sigma < 10^2$			
Metals	$\sigma > 10^2$			
Superconductors	$\sigma >> 10^{20}$			
$n = \# \text{ corriers}/\text{cm}^3$				

 $n = \# \text{ carriers/cm}^3$

$$\mu$$
= mobility (cm²/V•sec)

q = charge

Types of Charge

- Usual carriers: electrons, holes, ions(cations & anions)
- New for conducting polymers solitons, polarons, bipolarons

$$J_i = \sigma_{ij} E_j$$

where J_i is the current, σ_{ii} is the conductivity and E_i is the applied field

Battery Application

- Li-polymer vs Pb.
- Weight: $1/10^{\text{th}}$
- volume: $1/3^{rd}$
- power density: 10x
- processable into any shape; dry, no toxic fumes etc.

Examples of Conducting Organic Polymers & Dopants

Electrifying Plastics

Nobel Prize in Chemistry honors three who pioneered a new materials field

Figure by MIT OCW.

Prof. Alan G. MacDiarmid, 73 Chemistry, Univ. of Pennsylvania

How to Make a Conducting Polymer (Polyacetylene) (2000 Nobel Prize in Chemistry) Heeger, MacDiarmid, Shirakawa

Create chemical structures with delocalized electrons: extended π bonding. e.g. conjugated double bonds alternating with single bonds as in $-(CH=CH)_x$ -.

Conducting Polymers

graphite (sp² bonding) a sort of "polymerized benzene"

 $\sigma_{\parallel} \cong 10^5 \text{ S/cm}$ $\sigma_{\perp} \cong 10^1 \text{ S/cm}$

poly (paraphenylene) "PPP"

Conducting polymers also exhibiting graphite lattice structure:

- poly(p-phenylene)
- cis-poly(acetylene)
- trans-poly(acetylene)

Polyacetylene

<u>**Polyacetylene</u>**—anticipate a 1-d metallic conductor from π -bonds with delocalized electrons.</u>

but instead find

 $\sigma \cong 10^{-9} \text{ S/cm}$ $E_{gap} \cong 1.5 \text{ eV}$

The reason polyactylene is a insulator is that bond alteration occurs: due to Peierls stress induced

Figure by MIT OCW.

Doped Polyacetylene

 $\label{eq:Dope} \begin{array}{l} \underline{\textbf{Dope}} \mbox{ (oxidation of VB electron)} \\ To create a conductor, one can dope polyacetylene with AsF_5 which oxidizes the VB electrons of polyactylene and creates conduction via p-type transport \end{array}$

Figure by MIT OCW.

Mobility of charge carriers in doped conjugated polymers depends on:

- (1) chain conformation (intra-chain hoping)
- (2) chain packing (inter-chain hoping)
- (3) crystal size/orientation (inter-grain hoping)

Peierls Transition

lower energy Pick basis of Insulating Conductive Έ 6 electrons State State -π VB full VB 1/2 full <u>t</u>l tl_σ <u>t</u> Per C_2H_2 **Transport in Doped Polyacetylene** А (e- acceptor) radical-cation A* (polaron) second e- is lost to another acceptor Αbipolaron Transport via intra-chain movement of positive charges under an applied field. Independent positive charges are called solitons.

Light Emitting Polymers Photoluminescent and Electroluminescent

Image and text removed due to copyright restrictions.

Please see Fig. 1 in Kraft, Arno, et al. "Electroluminescent Conjugated Polymers – Seeing Polymers in a New Light." *Angewandte Chemie International Edition* 37 (1998): 402-428.

Polymers for LEDs

Images and text removed due to copyright restrictions.

Please see Fig. 3 and Table 2 in Kraft, Arno, et al. "Electroluminescent Conjugated Polymers – Seeing Polymers in a New Light." *Angewandte Chemie International Edition* 37 (1998): 402-428.

Light-emitting BCP/CdSe

Electrons and holes trap on dots, recombine, and radiate visible light.

Figure by MIT OCW.

- How does block copolymer/quantum dot morphology affect confinement and recombination?
- Polyphenylenevinylene (PPV) layer blocks electrons, confining recombination of electrons and holes away from ITO electrode.

CdSe Nanoparticles Targeted into Hole Transport Block

Image removed due to copyright restriction.

Please see Fig. 6 in Fogg, D. E., et al. "Fabrication of Quantum Dot/Polymer Composites: Phosphine-Functionalized Block Copolymers as Passivating Hosts for Cadmium Selenide Nanoclusters." *Macromolecules* 30 (1997): 417-426.

CdSe + ((NBE-CH₂O(CH₂)₅P(oct)₂)-b- MTD)

Electroluminescence in PPV/CdSe Hybrid

Image removed due to copyright restriction.

Please see Fig. 6 in Matoussi, H. et al. "Composite Thin Films of CdSeNanocrystals and a Surface Passivating/Electron Transporting Block Copolymer: Correlations Between Film Microstructure by Transmission Electron Microscopy and Electroluminescence." *Journal of Applied Physics* 86 (October 15, 1999): 4390-4399.

"Artificial Muscle Materials"

- Move robots
- Assist weak/damaged muscle
- Improve natural capabilities
- Direct biomedical devices

Images removed due to copyright restrictions.

Please see http://bleex.me.berkeley.edu/bleex.htm http://www.rf-ablation.engr.wisc.edu/pix/cardiac_catheter_placement.jpg http://world.honda.com/ASIMO/ Must Be: Quiet Lightweight Flexible Powerful Low energy Inexpensive

Why is natural muscle so good?

- Large strains (20-40%) and strain rates (>50%/sec)
- Control of stiffness
- Silent Operation
- High energy density
- Integrated fuel delivery, heat and waste removal
- Operation for billion of cycles extended

Figure by MIT OCW. contracted

Figure by MIT OCW.

How can we do this synthetically ?

Try to mimic nanoscale mechanism

- Hard to make the individual parts (synthesis)
- Hard to put them together in the right way (processing)

Figure by MIT OpenCourseWare.

Image removed due to copyright restriction.

Please see Fig. 8 in Collin, Jean-Paul, et al. "Shuttles and Muscles: Linear Molecular Machines Based on Transition Metals." *Accounts of Chemical Research* 34 (2001): 477-487.

Current Actuator Materials

Actuator	Active Strain (%)	Active Stress (MPa)	Work Density (kJ/m ³)	Peak Strain Rate (%/s)	Efficiency (%)	Actuation Potential (V)
Mammalian Skeletal Muscle	20	0.35	8	> 50	~ 40	
Dielectric Elastomers	Up to 380	~ 1	Up to 3400	4,500	Typically 30 up to 90	> 1000
Polypyrrole (conducting polymer)	2-10	Up to 30	100	12	20	< 2
Carbon Nanotube Actuators	<1	Up to 30	2	20	0.1	1
Liquid Crystal Elastomers (electrically activated)	2-4	0.5	~ 20	1000	75	0.1 (for 75 nm thick film)

Find more and compare them at http://www.actuatorweb.org

Figure by MIT OCW.

Madden, J. et al. *IEEE Journal of Oceanic Engineering*, 2006 **29**(3) 706 Hunter, I. and Lafontaine, S. *Technical Digest IEEE Solid State Sensors and Actuators Workshop*, 1992, 178-185

Dielectric Elastomers

Image of actuator removed due to copyright restrictions.

Advantages: very high strains, strain rates Disadvantages: requires fields of 150 MV/m or more!

(SRI International)

Polypyrrole Actuation

- Polypyrrole actuates via redoxdriven ion incorporation and expulsion
- This is typically measured in a wet electrochemical cell, but encapsulated trilayers can also be produced for actuation in air

Linear Actuation

Schematic of linear actuation and trilayer structure removed due to copyright restrictions.

in a wet emical cell, sulated an also be for in air $\frac{\text{Reduce}}{\text{Oxidize}} \xrightarrow{\text{O}} \xrightarrow{\text{O}}$

Advantages: low power, decent actuation metrics, room for improvement Disadvantages: slow