Tough Materials: Shear Bands & Crazes

Polycarbonate

Images removed due to copyright restrictions.

Please see, for example, http://www.doitpoms.ac.uk/miclib/micrograph.php?id=559 http://www.doitpoms.ac.uk/miclib/micrograph.php?id=592

Applied stress is vertical: horizontal *Crazes* and 45 deg *Shear Bands*

Fatigue crack propagation in polycarbonate Craze and crack moving to the right, Generating shear bands at the craze tip

The Future -SWCNTs: the ultimate polymer ?

Space Tether E = 1 TPa(expt and calc) $\sigma_{f} \sim 50 \text{ GPa}$ (calc)

Values for

individual tubes

Image removed due to copyright restriction.

Please see the cover of *American Scientist*, July/August 1997.

SWNTs: The Perfect Material

Adapted from NRC Report NMAB-458, April 1992.

TYPES OF NANOTUBES

Carbon nanotubes are basically sheets of graphite rolled up into a tube. Hence, the hexagonal two dimensional lattice of graphite is mapped on a one-dimensional cylinder of radius R with various helicities characterized by the **rolling vectors (n,m).**

(n,0) zigzag nanotube

(n,n) armchair nanotube

(n,m) chiral nanotube

Fibres or Molecules?

	Diameter (nm)
Conventional Carbon Fibres	~10,000
Carbon Nanotubes (Multi-walled)	~10
Carbon Nanotubes (Single-walled)	~1
Polymethylmethacrylate (PMMA)	~0.7

Aspect ratio L/D: C60 ~ 1; SWNT ~ 1000; MWNT ~ 2000

Credit:

A. Windle, Cambridge University - about the next 15 slides

Electrical Conductivity of Carbon

• CNT Fibre: 2.9 - 8.3 x 10⁵ Ω⁻¹m⁻¹

• Conventional Carbon fibre: $\sim 1 \times 10^5 \Omega^{-1} m^{-1}$

- Commercial graphite: $0.3 2 \times 10^5 \Omega^{-1} m^{-1}$
- Copper:

6.0 x 10⁷ Ω⁻¹m⁻¹

Source: Intro. To Mat. Sci. and Eng, W.D. Callister

Carbon Nanotubes long before the 'nano' word

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission. In situ CNT growth in high voltage TEM **Catalyst Particle** μm

T. Baird, J R Fryer and B Grant, Carbon 12, 591 (1974)

n.b. Endo (1976) C₆₀ (1985) lijima (1991)

Synthesis of MWCNT "carpets"

- Quartz reaction tube and substrates
- 14 mm and 65 mm diameter reactors
- Quartz slide inserted to collect carpet
- Reaction time 0 to 10 hrs: Longer experiment \rightarrow longer carpet

Catalyst on substrate: MWCNT Carpet

Images removed due to copyright restrictions.

Please see Fig. 2 in Chen, S. Y., et al. "Fabrication and field emission property studies of multiwall carbon nanotubes." Journal of Physics D: Applied Physics 37 (2004): 273-279.

Multi-walled nanotubes: MWCNT

Large Hollow Core plus nested graphene shells

Images removed due to copyright restrictions.

Please see http://endomoribu.shinshuu.ac.jp/research/cnt/images/mwcnt.jpg

TEM: beam perpendicular to nanotube axis

TEM : beam parallel to nanotube axis (chance)

Direct CNT Fibre Process (A. Windle)

- Continuous process
- Wide range of organic feed stocks work
- Feedstock to product in 10cm at 1200°C
- Both MWNT's and SWNTs
- Never have to handle nanotube powder, therefore reduced health risks
- Mechanical properties, so far average but for high volume fractions of highly aligned nanotubes prospects are good
- Feedstock costing 0.1cents/gram converted continuously to CNTs currently marketing at \$100/gram: mark-up of 10⁵

High Temperature Continuous Film Process

@ 1100 C, clean walls, nanotubes only stick below 200°C

CVD synthesis of Carbon Nanotubes

Continuous Wind Up: Film

Feedstock

Images removed due to copyright restrictions.

Please see Fig. 1 in Li, Ya-Li, et al. "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis." *Science* 304 (April 9, 2004): 276-278. Hydrocarbon Feedstock + Thiophene + Ferrocene 1100 to 1200 °C H₂ carrier gas

Fibre process: Product

Images removed due to copyright restrictions.

Please see Fig. 3a in Li, Ya-Li, et al. "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis." *Science* 304 (April 9, 2004): 276-278.

Ya-Li Li, Ian Kinloch and Alan Windle, Science, 304, p 276, 9 April 2004

Multi-wall CNTs: Variable Product Microstructure

Images removed due to copyright restrictions.

Please see Fig. 3b, c, d in Li, Ya-Li, et al. "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis." *Science* 304 (April 9, 2004): 276-278.

Fibre diameter of 20 to 50 µm

Reaction conditions: Ethanol feedstock

• MWNTs

- 2.3 wt% ferrocene
- 1.5 % thiophene
- H₂ flow 400 to 800 ml/min
- Temperature 1100 to 1180 °C

• SWNTs

- 2.3 wt% ferrocene
- 0.5 wt% thiophene
- 1200 ml/min H₂
- 1200 °C

SWNTs need greater dilution of Fe by carrier gas

SWNT (and DWNTs): ~ often mixed in with some MWNTs

Diffraction Contrast

Catalyst Particles

Images removed due to copyright restrictions.

Please see Fig. 2c and d in Motta, Marcelo, et al. "Mechanical Properties of Continuously Spun Fibers of Carbon Nanotubes." *Nano Letters* 5 (August 2005): 1529-1533.

Single Wall CNT Fibres

Courtesy of Alan Windle. Used with permission.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Mechanical Properties

Images removed due to copyright restrictions.

Please see Fig. 1 in Motta, Marcelo, et al. "Mechanical Properties of Continuously Spun Fibers of Carbon Nanotubes." *Nano Letters* 5 (August 2005): 1529-1533. The range of diameters along a fibre occurs due to differences in the local packing density of nanotubes and/or instabilities in the gas-phase reaction.

Courtesy of Alan Windle. Used with permission.

Direct CNT Fibre Process (A. Windle)

- Continuous process
- Wide range of organic feed stocks work
- Feedstock to product in 10cm at 1200°C
- Both MWNT's and SWNTs
- Never have to handle nanotube powder, therefore reduced health risks
- Mechanical properties, so far average but for high volume fractions of highly aligned nanotubes prospects are good
- Feedstock costing 0.1cents/gram converted continuously to CNTs currently marketing at \$100/gram: mark-up of 10⁵